Deserialization
Basic Information
Serialization은 객체를 보존할 수 있는 형식으로 변환하는 방법으로 이해되며, 이는 객체를 저장하거나 통신 과정의 일부로 전송할 의도를 가지고 있습니다. 이 기술은 객체가 나중에 재생성될 수 있도록 하여 구조와 상태를 유지하는 데 일반적으로 사용됩니다.
Deserialization은 반대로 직렬화에 반하는 과정입니다. 이는 특정 형식으로 구조화된 데이터를 가져와 다시 객체로 재구성하는 것을 포함합니다.
Deserialization은 공격자가 직렬화된 데이터를 조작하여 해로운 코드를 실행하거나 객체 재구성 과정에서 애플리케이션의 예기치 않은 동작을 유발할 수 있기 때문에 위험할 수 있습니다.
PHP
PHP에서는 직렬화 및 역직렬화 과정에서 특정 매직 메서드가 사용됩니다:
__sleep
: 객체가 직렬화될 때 호출됩니다. 이 메서드는 직렬화되어야 할 객체의 모든 속성 이름의 배열을 반환해야 합니다. 일반적으로 보류 중인 데이터를 커밋하거나 유사한 정리 작업을 수행하는 데 사용됩니다.__wakeup
: 객체가 역직렬화될 때 호출됩니다. 이는 직렬화 중에 손실된 데이터베이스 연결을 재설정하고 다른 재초기화 작업을 수행하는 데 사용됩니다.__unserialize
: 이 메서드는 객체가 역직렬화될 때__wakeup
대신 호출됩니다(존재하는 경우). 이는__wakeup
에 비해 역직렬화 과정에 대한 더 많은 제어를 제공합니다.__destruct
: 이 메서드는 객체가 파괴되기 직전이나 스크립트가 끝날 때 호출됩니다. 일반적으로 파일 핸들이나 데이터베이스 연결을 닫는 등의 정리 작업에 사용됩니다.__toString
: 이 메서드는 객체를 문자열로 취급할 수 있게 해줍니다. 이는 파일을 읽거나 그 안의 함수 호출에 따라 다른 작업을 수행하는 데 사용될 수 있으며, 객체의 텍스트 표현을 효과적으로 제공합니다.
결과를 보면 객체가 역직렬화될 때 __wakeup
및 __destruct
함수가 호출되는 것을 알 수 있습니다. 여러 튜토리얼에서 __toString
함수가 일부 속성을 출력하려고 할 때 호출된다고 하지만, 현재는 더 이상 그렇지 않은 것 같습니다.
클래스에 구현된 경우 __unserialize(array $data)
메서드가 __wakeup()
대신 호출됩니다. 이 메서드는 직렬화된 데이터를 배열로 제공하여 객체를 역직렬화할 수 있게 해줍니다. 이 메서드를 사용하여 속성을 역직렬화하고 역직렬화 시 필요한 작업을 수행할 수 있습니다.
여기에서 설명된 PHP 예제를 읽을 수 있습니다: https://www.notsosecure.com/remote-code-execution-via-php-unserialize/, 여기 https://www.exploit-db.com/docs/english/44756-deserialization-vulnerability.pdf 또는 여기 https://securitycafe.ro/2015/01/05/understanding-php-object-injection/
PHP Deserial + Autoload Classes
PHP 자동 로드 기능을 악용하여 임의의 PHP 파일을 로드하고 더 많은 작업을 수행할 수 있습니다:
PHP - Deserialization + Autoload Classes참조된 값 직렬화
어떤 이유로든 다른 직렬화된 값에 대한 참조로 값을 직렬화하고 싶다면 다음과 같이 할 수 있습니다:
PHPGGC (ysoserial for PHP)
PHPGGC는 PHP 역직렬화를 악용하기 위한 페이로드를 생성하는 데 도움을 줄 수 있습니다.
응용 프로그램의 소스 코드에서 역직렬화를 악용할 방법을 찾을 수 없는 경우가 많습니다. 그러나 외부 PHP 확장 코드를 악용할 수 있는 경우가 있습니다.
따라서 가능하다면 서버의 phpinfo()
를 확인하고 인터넷에서 검색(심지어 PHPGGC의 가젯에서도)하여 악용할 수 있는 가능한 가젯을 찾아보세요.
phar:// 메타데이터 역직렬화
파일을 읽기만 하고 그 안의 PHP 코드를 실행하지 않는 LFI를 찾았다면, 예를 들어 file_get_contents(), fopen(), file() 또는 file_exists(), md5_file(), filemtime() 또는 filesize()와 같은 함수를 사용하는 경우. phar 프로토콜을 사용하여 파일을 읽을 때 발생하는 역직렬화를 악용해 볼 수 있습니다. 자세한 정보는 다음 게시물을 읽어보세요:
phar:// deserializationPython
Pickle
객체가 언픽클될 때, 함수 ___reduce___가 실행됩니다. 악용될 경우, 서버는 오류를 반환할 수 있습니다.
Before checking the bypass technique, try using print(base64.b64encode(pickle.dumps(P(),2)))
to generate an object that is compatible with python2 if you're running python3.
For more information about escaping from pickle jails check:
Bypass Python sandboxesYaml & jsonpickle
다음 페이지는 YAML에서 안전하지 않은 역직렬화를 악용하는 기술을 제시하고 Pickle, PyYAML, jsonpickle 및 ruamel.yaml에 대한 RCE 역직렬화 페이로드를 생성하는 데 사용할 수 있는 도구로 마무리됩니다:
Python Yaml DeserializationClass Pollution (Python Prototype Pollution)
Class Pollution (Python's Prototype Pollution)NodeJS
JS Magic Functions
JS 는 PHP나 Python처럼 객체 생성을 위해 실행되는 "마법" 함수가 없습니다. 그러나 toString
, valueOf
, **toJSON
**과 같이 직접 호출하지 않고도 자주 사용되는 함수가 있습니다.
역직렬화를 악용하면 이러한 함수를 타협하여 다른 코드를 실행할 수 있으며 (프로토타입 오염을 악용할 가능성) 호출될 때 임의의 코드를 실행할 수 있습니다.
함수를 직접 호출하지 않고 호출하는 또 다른 "마법" 방법은 비동기 함수(프라미스)에서 반환된 객체를 타협하는 것입니다. 왜냐하면, 그 반환 객체를 **"then"이라는 함수형 속성을 가진 다른 프라미스로 변환하면, 다른 프라미스에 의해 반환되기 때문에 실행됩니다. 자세한 정보는 이 링크 를 참조하세요.
__proto__
및 prototype
오염
__proto__
및 prototype
오염이 기술에 대해 배우고 싶다면 다음 튜토리얼을 확인하세요:
NodeJS - __proto__ & prototype Pollution이 라이브러리는 함수를 직렬화할 수 있게 해줍니다. 예:
The serialised object will looks like: 직렬화된 객체는 다음과 같이 보입니다:
You can see in the example that when a function is serialized the _$$ND_FUNC$$_
flag is appended to the serialized object.
Inside the file node-serialize/lib/serialize.js
you can find the same flag and how the code is using it.
As you may see in the last chunk of code, if the flag is found eval
is used to deserialize the function, so basically user input if being used inside the eval
function.
However, just serialising a function won't execute it as it would be necessary that some part of the code is calling y.rce
in our example and that's highly unlikable.
Anyway, you could just modify the serialised object adding some parenthesis in order to auto execute the serialized function when the object is deserialized.
In the next chunk of code notice the last parenthesis and how the unserialize
function will automatically execute the code:
이전에 언급했듯이, 이 라이브러리는 _$$ND_FUNC$$_
이후의 코드를 가져와서 실행합니다 eval
을 사용하여. 따라서 코드를 자동으로 실행하려면 함수 생성 부분과 마지막 괄호를 삭제하고 다음 예제와 같이 JS 원라이너를 실행하면 됩니다:
여기에서 이 취약점을 악용하는 방법에 대한 추가 정보를 찾을 수 있습니다.
funcster의 주목할 만한 점은 표준 내장 객체의 접근 불가능성입니다. 이들은 접근 가능한 범위를 벗어납니다. 이 제한으로 인해 내장 객체에서 메서드를 호출하려는 코드 실행이 방지되어, console.log()
나 require(something)
와 같은 명령을 사용할 때 "ReferenceError: console is not defined"
와 같은 예외가 발생합니다.
이 제한에도 불구하고, 모든 표준 내장 객체를 포함한 전역 컨텍스트에 대한 전체 접근을 복원하는 것은 특정 접근 방식을 통해 가능합니다. 전역 컨텍스트를 직접 활용함으로써 이 제한을 우회할 수 있습니다. 예를 들어, 다음 스니펫을 사용하여 접근을 재설정할 수 있습니다:
자세한 정보는 이 출처를 읽어보세요 more information read this source.
serialize-javascript 패키지는 직렬화 목적으로만 설계되었으며, 내장된 역직렬화 기능이 없습니다. 사용자는 역직렬화를 위한 자신의 방법을 구현할 책임이 있습니다. 공식 예제에서는 직렬화된 데이터를 역직렬화하기 위해 eval
의 직접 사용을 제안합니다:
이 함수가 객체를 역직렬화하는 데 사용된다면 쉽게 악용할 수 있습니다:
자세한 정보는 이 출처를 읽어보세요 more information read this source.
Cryo 라이브러리
다음 페이지에서는 이 라이브러리를 악용하여 임의의 명령을 실행하는 방법에 대한 정보를 찾을 수 있습니다:
Java - HTTP
Java에서는 역직렬화 콜백이 역직렬화 과정 중에 실행됩니다. 이 실행은 공격자가 이러한 콜백을 유발하는 악성 페이로드를 제작하여 악성 행동을 실행할 수 있도록 악용될 수 있습니다.
지문
화이트 박스
코드베이스에서 잠재적인 직렬화 취약점을 식별하기 위해 다음을 검색하세요:
Serializable
인터페이스를 구현하는 클래스.java.io.ObjectInputStream
,readObject
,readUnshare
함수의 사용.
다음에 특히 주의하세요:
외부 사용자가 정의한 매개변수와 함께 사용되는
XMLDecoder
.XStream 버전이 1.46 이하인 경우 직렬화 문제에 취약한
XStream
의fromXML
메서드.readObject
메서드와 결합된ObjectInputStream
.readObject
,readObjectNodData
,readResolve
, 또는readExternal
과 같은 메서드의 구현.ObjectInputStream.readUnshared
.Serializable
의 일반적인 사용.
블랙 박스
블랙 박스 테스트의 경우, java 직렬화 객체를 나타내는 특정 **서명 또는 "매직 바이트"**를 찾으세요 ( ObjectInputStream
에서 유래):
16진수 패턴:
AC ED 00 05
.Base64 패턴:
rO0
.Content-type
이application/x-java-serialized-object
로 설정된 HTTP 응답 헤더.이전 압축을 나타내는 16진수 패턴:
1F 8B 08 00
.이전 압축을 나타내는 Base64 패턴:
H4sIA
..faces
확장자를 가진 웹 파일과faces.ViewState
매개변수. 웹 애플리케이션에서 이러한 패턴을 발견하면 Java JSF ViewState 역직렬화에 대한 게시물에서 자세히 설명된 대로 검토해야 합니다.
취약점 확인
Java Deserialized exploit가 어떻게 작동하는지 배우고 싶다면 Basic Java Deserialization, Java DNS Deserialization, 및 CommonsCollection1 Payload를 살펴보아야 합니다.
화이트 박스 테스트
알려진 취약점이 있는 애플리케이션이 설치되어 있는지 확인할 수 있습니다.
You could try to check all the libraries known to be vulnerable and that Ysoserial can provide an exploit for. Or you could check the libraries indicated on Java-Deserialization-Cheat-Sheet. You could also use gadgetinspector to search for possible gadget chains that can be exploited. When running gadgetinspector (after building it) don't care about the tons of warnings/errors that it's going through and let it finish. It will write all the findings under gadgetinspector/gadget-results/gadget-chains-year-month-day-hore-min.txt. Please, notice that gadgetinspector won't create an exploit and it may indicate false positives.
블랙 박스 테스트
Using the Burp extension gadgetprobe you can identify which libraries are available (and even the versions). With this information it could be easier to choose a payload to exploit the vulnerability.
Read this to learn more about GadgetProbe.
GadgetProbe is focused on ObjectInputStream
deserializations.
Using Burp extension Java Deserialization Scanner you can identify vulnerable libraries exploitable with ysoserial and exploit them.
Read this to learn more about Java Deserialization Scanner.
Java Deserialization Scanner is focused on ObjectInputStream
deserializations.
You can also use Freddy to detect deserializations vulnerabilities in Burp. This plugin will detect not only ObjectInputStream
related vulnerabilities but also vulns from Json an Yml deserialization libraries. In active mode, it will try to confirm them using sleep or DNS payloads.
You can find more information about Freddy here.
직렬화 테스트
Not all is about checking if any vulnerable library is used by the server. Sometimes you could be able to change the data inside the serialized object and bypass some checks (maybe grant you admin privileges inside a webapp). If you find a java serialized object being sent to a web application, you can use SerializationDumper to print in a more human readable format the serialization object that is sent. Knowing which data are you sending would be easier to modify it and bypass some checks.
익스플로잇
ysoserial
The main tool to exploit Java deserializations is ysoserial (download here). You can also consider using ysoseral-modified which will allow you to use complex commands (with pipes for example).
Note that this tool is focused on exploiting ObjectInputStream
.
I would start using the "URLDNS" payload before a RCE payload to test if the injection is possible. Anyway, note that maybe the "URLDNS" payload is not working but other RCE payload is.
When creating a payload for java.lang.Runtime.exec() you cannot use special characters like ">" or "|" to redirect the output of an execution, "$()" to execute commands or even pass arguments to a command separated by spaces (you can do echo -n "hello world"
but you can't do python2 -c 'print "Hello world"'
). In order to encode correctly the payload you could use this webpage.
다음 스크립트를 사용하여 Windows와 Linux에 대한 모든 가능한 코드 실행 페이로드를 생성한 다음 취약한 웹 페이지에서 테스트해 보세요:
serialkillerbypassgadgets
You can use https://github.com/pwntester/SerialKillerBypassGadgetCollection along with ysoserial to create more exploits. More information about this tool in the slides of the talk where the tool was presented: https://es.slideshare.net/codewhitesec/java-deserialization-vulnerabilities-the-forgotten-bug-class?next_slideshow=1
marshalsec
marshalsec 는 Java에서 다양한 Json 및 Yml 직렬화 라이브러리를 악용하기 위한 페이로드를 생성하는 데 사용할 수 있습니다.
In order to compile the project I needed to add this dependencies to pom.xml
:
Maven을 설치하고 프로젝트를 컴파일합니다:
FastJSON
이 Java JSON 라이브러리에 대해 더 알아보세요: https://www.alphabot.com/security/blog/2020/java/Fastjson-exceptional-deserialization-vulnerabilities.html
Labs
ysoserial 페이로드를 테스트하고 싶다면 이 웹앱을 실행하세요: https://github.com/hvqzao/java-deserialize-webapp
Why
Java는 다양한 목적을 위해 많은 직렬화를 사용합니다:
HTTP 요청: 직렬화는 매개변수, ViewState, 쿠키 등의 관리를 위해 널리 사용됩니다.
RMI (원격 메서드 호출): Java RMI 프로토콜은 직렬화에 전적으로 의존하며, Java 애플리케이션의 원격 통신의 초석입니다.
HTTP를 통한 RMI: 이 방법은 Java 기반의 두꺼운 클라이언트 웹 애플리케이션에서 일반적으로 사용되며, 모든 객체 통신에 직렬화를 활용합니다.
JMX (Java 관리 확장): JMX는 네트워크를 통해 객체를 전송하기 위해 직렬화를 사용합니다.
사용자 정의 프로토콜: Java에서는 표준 관행으로 원시 Java 객체의 전송이 포함되며, 이는 향후 익스플로잇 예제에서 시연될 것입니다.
Prevention
Transient objects
Serializable
을 구현하는 클래스는 직렬화되지 않아야 하는 클래스 내부의 객체를 transient
로 구현할 수 있습니다. 예를 들어:
Serializable을 구현해야 하는 클래스의 직렬화를 피하십시오
특정 객체가 클래스 계층 구조로 인해 Serializable
인터페이스를 구현해야 하는 시나리오에서는 의도하지 않은 역직렬화의 위험이 있습니다. 이를 방지하기 위해, 아래와 같이 항상 예외를 발생시키는 final
readObject()
메서드를 정의하여 이러한 객체가 역직렬화되지 않도록 하십시오:
Java에서 역직렬화 보안 강화하기
java.io.ObjectInputStream
사용자 정의는 역직렬화 프로세스를 보호하기 위한 실용적인 접근 방식입니다. 이 방법은 다음과 같은 경우에 적합합니다:
역직렬화 코드가 귀하의 제어 하에 있을 때.
역직렬화에 예상되는 클래스가 알려져 있을 때.
resolveClass()
메서드를 재정의하여 허용된 클래스만 역직렬화되도록 제한합니다. 이는 다음 예제와 같이 Bicycle
클래스만 역직렬화되도록 명시적으로 허용된 클래스를 제외한 모든 클래스의 역직렬화를 방지합니다:
보안 강화를 위한 Java 에이전트 사용은 코드 수정을 할 수 없을 때 대체 솔루션을 제공합니다. 이 방법은 주로 유해한 클래스 블랙리스트에 적용되며, JVM 매개변수를 사용합니다:
동적으로 역직렬화를 안전하게 하는 방법을 제공하며, 즉각적인 코드 변경이 비현실적인 환경에 이상적입니다.
rO0 by Contrast Security에서 예제를 확인하세요.
직렬화 필터 구현: Java 9는 ObjectInputFilter
인터페이스를 통해 직렬화 필터를 도입하여, 역직렬화되기 전에 직렬화된 객체가 충족해야 하는 기준을 지정하는 강력한 메커니즘을 제공합니다. 이러한 필터는 전역적으로 또는 스트림별로 적용할 수 있어 역직렬화 프로세스에 대한 세밀한 제어를 제공합니다.
직렬화 필터를 사용하려면 모든 역직렬화 작업에 적용되는 전역 필터를 설정하거나 특정 스트림에 대해 동적으로 구성할 수 있습니다. 예를 들어:
외부 라이브러리를 활용한 보안 강화: NotSoSerial, jdeserialize, Kryo와 같은 라이브러리는 Java 역직렬화를 제어하고 모니터링하기 위한 고급 기능을 제공합니다. 이러한 라이브러리는 클래스 화이트리스트 또는 블랙리스트 작성, 역직렬화 전에 직렬화된 객체 분석, 사용자 정의 직렬화 전략 구현과 같은 추가 보안 계층을 제공할 수 있습니다.
NotSoSerial은 신뢰할 수 없는 코드의 실행을 방지하기 위해 역직렬화 프로세스를 가로챕니다.
jdeserialize는 역직렬화 없이 직렬화된 Java 객체를 분석할 수 있게 하여 잠재적으로 악의적인 콘텐츠를 식별하는 데 도움을 줍니다.
Kryo는 속도와 효율성을 강조하는 대체 직렬화 프레임워크로, 보안을 강화할 수 있는 구성 가능한 직렬화 전략을 제공합니다.
참고 문헌
역직렬화 및 ysoserial 강연: http://frohoff.github.io/appseccali-marshalling-pickles/
역직렬화 CVE: https://paper.seebug.org/123/
JNDI 인젝션 및 log4Shell
JNDI 인젝션이란 무엇인지, RMI, CORBA 및 LDAP를 통해 이를 악용하는 방법, log4shell을 이용한 공격 방법에 대한 내용은 다음 페이지에서 확인하세요:
JNDI - Java Naming and Directory Interface & Log4ShellJMS - Java 메시지 서비스
Java 메시지 서비스 (JMS) API는 두 개 이상의 클라이언트 간에 메시지를 전송하기 위한 Java 메시지 지향 미들웨어 API입니다. 이는 생산자-소비자 문제를 처리하기 위한 구현입니다. JMS는 Java 플랫폼, 엔터프라이즈 에디션(Java EE)의 일부이며, Sun Microsystems에서 개발한 사양에 의해 정의되었지만 이후 Java 커뮤니티 프로세스에 의해 안내되었습니다. 이는 Java EE 기반의 애플리케이션 구성 요소가 메시지를 생성, 전송, 수신 및 읽을 수 있도록 하는 메시징 표준입니다. 이는 분산 애플리케이션의 다양한 구성 요소 간의 통신을 느슨하게 결합되고 신뢰할 수 있으며 비동기적으로 만듭니다. (출처: Wikipedia).
제품
이 미들웨어를 사용하여 메시지를 전송하는 여러 제품이 있습니다: