HTTP Request Smuggling / HTTP Desync Attack
Last updated
Last updated
Μάθετε και εξασκηθείτε στο AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE) Μάθετε και εξασκηθείτε στο GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Αποκτήστε την προοπτική ενός hacker για τις εφαρμογές σας, το δίκτυο και το cloud
Βρείτε και αναφέρετε κρίσιμες, εκμεταλλεύσιμες ευπάθειες με πραγματικό επιχειρηματικό αντίκτυπο. Χρησιμοποιήστε τα 20+ προσαρμοσμένα εργαλεία μας για να χαρτογραφήσετε την επιφάνεια επίθεσης, να βρείτε ζητήματα ασφαλείας που σας επιτρέπουν να κλιμακώσετε προνόμια και να χρησιμοποιήσετε αυτοματοποιημένες εκμεταλλεύσεις για να συλλέξετε βασικά αποδεικτικά στοιχεία, μετατρέποντας τη σκληρή δουλειά σας σε πειστικές αναφορές.
Αυτή η ευπάθεια συμβαίνει όταν μια αποσυγχρονισμένη κατάσταση μεταξύ των proxy front-end και του server back-end επιτρέπει σε έναν επιτιθέμενο να στείλει ένα HTTP request που θα ερμηνευθεί ως ένα μόνο request από τους proxy front-end (load balance/reverse-proxy) και ως 2 requests από τον server back-end. Αυτό επιτρέπει σε έναν χρήστη να τροποποιήσει το επόμενο request που φτάνει στον server back-end μετά το δικό του.
Εάν ληφθεί ένα μήνυμα με τόσο πεδίο κεφαλίδας Transfer-Encoding όσο και πεδίο κεφαλίδας Content-Length, το τελευταίο ΠΡΕΠΕΙ να αγνοηθεί.
Content-Length
Η κεφαλίδα Content-Length υποδεικνύει το μέγεθος του σώματος της οντότητας, σε bytes, που αποστέλλεται στον παραλήπτη.
Transfer-Encoding: chunked
Η κεφαλίδα Transfer-Encoding προσδιορίζει τη μορφή κωδικοποίησης που χρησιμοποιείται για την ασφαλή μεταφορά του σώματος του payload στον χρήστη. Το chunked σημαίνει ότι μεγάλα δεδομένα αποστέλλονται σε μια σειρά κομματιών.
Ο Front-End (ένα load-balance / Reverse Proxy) επεξεργάζεται την κεφαλίδα content-length ή την κεφαλίδα transfer-encoding και ο Back-end server επεξεργάζεται την άλλη προκαλώντας μια αποσυγχρονισμένη κατάσταση μεταξύ των 2 συστημάτων. Αυτό θα μπορούσε να είναι πολύ κρίσιμο καθώς ένας επιτιθέμενος θα είναι σε θέση να στείλει ένα request στον reverse proxy που θα ερμηνευθεί από τον back-end server ως 2 διαφορετικά requests. Ο κίνδυνος αυτής της τεχνικής έγκειται στο γεγονός ότι ο back-end server θα ερμηνεύσει το 2ο request που έχει εισαχθεί σαν να προήλθε από τον επόμενο πελάτη και το πραγματικό request αυτού του πελάτη θα είναι μέρος του εισαγμένου request.
Θυμηθείτε ότι στο HTTP ένας χαρακτήρας νέας γραμμής αποτελείται από 2 bytes:
Content-Length: Αυτή η κεφαλίδα χρησιμοποιεί έναν δεκαδικό αριθμό για να υποδείξει τον αριθμό των bytes του σώματος του request. Το σώμα αναμένεται να τελειώνει στον τελευταίο χαρακτήρα, μια νέα γραμμή δεν είναι απαραίτητη στο τέλος του request.
Transfer-Encoding: Αυτή η κεφαλίδα χρησιμοποιεί στο σώμα έναν δεκαεξαδικό αριθμό για να υποδείξει τον αριθμό των bytes του επόμενου κομματιού. Το chunk πρέπει να τελειώνει με μια νέα γραμμή αλλά αυτή η νέα γραμμή δεν μετράται από τον δείκτη μήκους. Αυτή η μέθοδος μεταφοράς πρέπει να τελειώνει με ένα chunk μεγέθους 0 ακολουθούμενο από 2 νέες γραμμές: 0
Connection: Βασισμένο στην εμπειρία μου, συνιστάται να χρησιμοποιείτε Connection: keep-alive
στο πρώτο request της επίθεσης Smuggling.
Όταν προσπαθείτε να εκμεταλλευτείτε αυτό με το Burp Suite απενεργοποιήστε το Update Content-Length
και Normalize HTTP/1 line endings
στον επαναλήπτη γιατί ορισμένα gadgets εκμεταλλεύονται τις νέες γραμμές, τις επιστροφές καροτσιού και τα κακώς διαμορφωμένα content-lengths.
Οι επιθέσεις HTTP request smuggling κατασκευάζονται στέλνοντας ασαφή requests που εκμεταλλεύονται τις διαφορές στον τρόπο που οι servers front-end και back-end ερμηνεύουν τις κεφαλίδες Content-Length
(CL) και Transfer-Encoding
(TE). Αυτές οι επιθέσεις μπορούν να εκδηλωθούν σε διάφορες μορφές, κυρίως ως CL.TE, TE.CL, και TE.TE. Κάθε τύπος αντιπροσωπεύει έναν μοναδικό συνδυασμό του πώς οι servers front-end και back-end δίνουν προτεραιότητα σε αυτές τις κεφαλίδες. Οι ευπάθειες προκύπτουν από την επεξεργασία του ίδιου request από τους servers με διαφορετικούς τρόπους, οδηγώντας σε απροσδόκητα και δυνητικά κακόβουλα αποτελέσματα.
Στον προηγούμενο πίνακα θα πρέπει να προσθέσετε την τεχνική TE.0, όπως η τεχνική CL.0 αλλά χρησιμοποιώντας Transfer Encoding.
Front-End (CL): Επεξεργάζεται το request με βάση την κεφαλίδα Content-Length
.
Back-End (TE): Επεξεργάζεται το request με βάση την κεφαλίδα Transfer-Encoding
.
Σενάριο Επίθεσης:
Ο επιτιθέμενος στέλνει ένα request όπου η τιμή της κεφαλίδας Content-Length
δεν ταιριάζει με το πραγματικό μήκος περιεχομένου.
Ο server front-end προωθεί ολόκληρο το request στον back-end, με βάση την τιμή Content-Length
.
Ο server back-end επεξεργάζεται το request ως chunked λόγω της κεφαλίδας Transfer-Encoding: chunked
, ερμηνεύοντας τα υπόλοιπα δεδομένα ως ένα ξεχωριστό, επόμενο request.
Παράδειγμα:
Front-End (TE): Επεξεργάζεται το request με βάση την κεφαλίδα Transfer-Encoding
.
Back-End (CL): Επεξεργάζεται το request με βάση την κεφαλίδα Content-Length
.
Σενάριο Επίθεσης:
Ο επιτιθέμενος στέλνει ένα chunked request όπου το μέγεθος του chunk (7b
) και το πραγματικό μήκος περιεχομένου (Content-Length: 4
) δεν ευθυγραμμίζονται.
Ο server front-end, τιμώντας το Transfer-Encoding
, προωθεί ολόκληρο το request στον back-end.
Ο server back-end, σεβόμενος το Content-Length
, επεξεργάζεται μόνο το αρχικό μέρος του request (7b
bytes), αφήνοντας το υπόλοιπο ως μέρος ενός μη προγραμματισμένου επόμενου request.
Παράδειγμα:
Servers: Και οι δύο υποστηρίζουν Transfer-Encoding
, αλλά ένας μπορεί να παραπλανηθεί ώστε να το αγνοήσει μέσω παραπλάνησης.
Σενάριο Επίθεσης:
Ο επιτιθέμενος στέλνει ένα request με παραπλανημένες κεφαλίδες Transfer-Encoding
.
Ανάλογα με το ποιος server (front-end ή back-end) αποτυγχάνει να αναγνωρίσει την παραπλάνηση, μπορεί να εκμεταλλευτεί μια ευπάθεια CL.TE ή TE.CL.
Το μη επεξεργασμένο μέρος του request, όπως φαίνεται από έναν από τους servers, γίνεται μέρος ενός επόμενου request, οδηγώντας σε smuggling.
Παράδειγμα:
Και οι δύο servers επεξεργάζονται το request αποκλειστικά με βάση την κεφαλίδα Content-Length
.
Αυτό το σενάριο συνήθως δεν οδηγεί σε smuggling, καθώς υπάρχει ευθυγράμμιση στον τρόπο που και οι δύο servers ερμηνεύουν το μήκος του request.
Παράδειγμα:
Αναφέρεται σε σενάρια όπου η κεφαλίδα Content-Length
είναι παρούσα και έχει τιμή διαφορετική από το μηδέν, υποδεικνύοντας ότι το σώμα του request έχει περιεχόμενο. Ο back-end αγνοεί την κεφαλίδα Content-Length
(η οποία θεωρείται 0), αλλά ο front-end την αναλύει.
Είναι κρίσιμο για την κατανόηση και την κατασκευή επιθέσεων smuggling, καθώς επηρεάζει το πώς οι servers καθορίζουν το τέλος ενός request.
Παράδειγμα:
Όπως το προηγούμενο αλλά χρησιμοποιώντας TE
Τεχνική αναφέρθηκε εδώ
Παράδειγμα:
Αυτή η τεχνική είναι επίσης χρήσιμη σε σενάρια όπου είναι δυνατόν να σπάσει ένας διακομιστής ιστού ενώ διαβάζετε τα αρχικά δεδομένα HTTP αλλά χωρίς να κλείσετε τη σύνδεση. Με αυτόν τον τρόπο, το σώμα του αιτήματος HTTP θα θεωρείται το επόμενο αίτημα HTTP.
Για παράδειγμα, όπως εξηγείται σε αυτή τη γραφή, στο Werkzeug ήταν δυνατό να σταλούν μερικοί Unicode χαρακτήρες και αυτό θα έκανε τον διακομιστή να σπάσει. Ωστόσο, αν η σύνδεση HTTP δημιουργήθηκε με την κεφαλίδα Connection: keep-alive
, το σώμα του αιτήματος δεν θα διαβαστεί και η σύνδεση θα παραμείνει ανοιχτή, οπότε το σώμα του αιτήματος θα αντιμετωπιστεί ως το επόμενο αίτημα HTTP.
Καταχρώντας τις κεφαλίδες hop-by-hop, θα μπορούσατε να υποδείξετε στον proxy να διαγράψει την κεφαλίδα Content-Length ή Transfer-Encoding ώστε να είναι δυνατή η κατάχρηση του HTTP request smuggling.
Για περισσότερες πληροφορίες σχετικά με τις κεφαλίδες hop-by-hop επισκεφθείτε:
hop-by-hop headersΗ αναγνώριση ευπαθειών HTTP request smuggling μπορεί συχνά να επιτευχθεί χρησιμοποιώντας τεχνικές χρονομέτρησης, οι οποίες βασίζονται στην παρατήρηση του πόσο χρόνο χρειάζεται ο διακομιστής για να απαντήσει σε παραποιημένα αιτήματα. Αυτές οι τεχνικές είναι ιδιαίτερα χρήσιμες για την ανίχνευση ευπαθειών CL.TE και TE.CL. Εκτός από αυτές τις μεθόδους, υπάρχουν άλλες στρατηγικές και εργαλεία που μπορούν να χρησιμοποιηθούν για να βρουν τέτοιες ευπάθειες:
Μέθοδος:
Στείλτε ένα αίτημα που, αν η εφαρμογή είναι ευάλωτη, θα προκαλέσει τον διακομιστή back-end να περιμένει για επιπλέον δεδομένα.
Παράδειγμα:
Παρατήρηση:
Ο διακομιστής front-end επεξεργάζεται το αίτημα με βάση το Content-Length
και κόβει το μήνυμα πρόωρα.
Ο διακομιστής back-end, περιμένοντας ένα chunked μήνυμα, περιμένει το επόμενο chunk που ποτέ δεν φτάνει, προκαλώντας καθυστέρηση.
Δείκτες:
Χρονοouts ή μεγάλες καθυστερήσεις στην απάντηση.
Λήψη σφάλματος 400 Bad Request από τον διακομιστή back-end, μερικές φορές με λεπτομερείς πληροφορίες διακομιστή.
Μέθοδος:
Στείλτε ένα αίτημα που, αν η εφαρμογή είναι ευάλωτη, θα προκαλέσει τον διακομιστή back-end να περιμένει για επιπλέον δεδομένα.
Παράδειγμα:
Παρατήρηση:
Ο διακομιστής front-end επεξεργάζεται το αίτημα με βάση το Transfer-Encoding
και προωθεί ολόκληρο το μήνυμα.
Ο διακομιστής back-end, περιμένοντας ένα μήνυμα με βάση το Content-Length
, περιμένει για επιπλέον δεδομένα που ποτέ δεν φτάνουν, προκαλώντας καθυστέρηση.
Ανάλυση Διαφορετικών Απαντήσεων:
Στείλτε ελαφρώς παραλλαγμένες εκδόσεις ενός αιτήματος και παρατηρήστε αν οι απαντήσεις του διακομιστή διαφέρουν με απροσδόκητο τρόπο, υποδεικνύοντας μια διαφορά στην ανάλυση.
Χρησιμοποιώντας Αυτοματοποιημένα Εργαλεία:
Εργαλεία όπως η επέκταση 'HTTP Request Smuggler' του Burp Suite μπορούν αυτόματα να δοκιμάσουν αυτές τις ευπάθειες στέλνοντας διάφορες μορφές ασαφών αιτημάτων και αναλύοντας τις απαντήσεις.
Δοκιμές Διαφορετικών Τιμών Content-Length:
Στείλτε αιτήματα με μεταβαλλόμενες τιμές Content-Length
που δεν ευθυγραμμίζονται με το πραγματικό μήκος περιεχομένου και παρατηρήστε πώς ο διακομιστής χειρίζεται τέτοιες ασυμφωνίες.
Δοκιμές Διαφορετικών Τιμών Transfer-Encoding:
Στείλτε αιτήματα με παραποιημένες ή κακώς διαμορφωμένες κεφαλίδες Transfer-Encoding
και παρακολουθήστε πώς αντιδρούν διαφορετικά οι διακομιστές front-end και back-end σε τέτοιες παραποιήσεις.
Αφού επιβεβαιωθεί η αποτελεσματικότητα των τεχνικών χρονομέτρησης, είναι κρίσιμο να επαληθευτεί αν τα αιτήματα του πελάτη μπορούν να παραποιηθούν. Μια απλή μέθοδος είναι να προσπαθήσετε να δηλητηριάσετε τα αιτήματά σας, για παράδειγμα, κάνοντάς το αίτημα προς το /
να αποδώσει μια απάντηση 404. Τα παραδείγματα CL.TE
και TE.CL
που συζητήθηκαν προηγουμένως στο Basic Examples δείχνουν πώς να δηλητηριάσετε το αίτημα ενός πελάτη για να προκαλέσετε μια απάντηση 404, παρά το γεγονός ότι ο πελάτης στοχεύει να αποκτήσει πρόσβαση σε διαφορετικό πόρο.
Κύριες Σκέψεις
Κατά τη δοκιμή ευπαθειών request smuggling παρεμβαίνοντας σε άλλα αιτήματα, έχετε υπόψη:
Διακριτές Συνδέσεις Δικτύου: Τα "επίθεση" και "κανονικά" αιτήματα θα πρέπει να αποστέλλονται μέσω ξεχωριστών συνδέσεων δικτύου. Η χρήση της ίδιας σύνδεσης και για τα δύο δεν επιβεβαιώνει την παρουσία της ευπάθειας.
Συνεπής URL και Παράμετροι: Στοχεύστε να χρησιμοποιήσετε ταυτόσημα URLs και ονόματα παραμέτρων και για τα δύο αιτήματα. Οι σύγχρονες εφαρμογές συχνά δρομολογούν αιτήματα σε συγκεκριμένους διακομιστές back-end με βάση το URL και τις παραμέτρους. Η αντιστοίχιση αυτών αυξάνει την πιθανότητα ότι και τα δύο αιτήματα θα επεξεργαστούν από τον ίδιο διακομιστή, προϋπόθεση για μια επιτυχημένη επίθεση.
Χρονομέτρηση και Συνθήκες Αγώνα: Το "κανονικό" αίτημα, που προορίζεται να ανιχνεύσει την παρέμβαση από το "επίθεση" αίτημα, ανταγωνίζεται άλλα ταυτόχρονα αιτήματα εφαρμογής. Επομένως, στείλτε το "κανονικό" αίτημα αμέσως μετά το "επίθεση" αίτημα. Οι πολυάσχολες εφαρμογές μπορεί να απαιτούν πολλές δοκιμές για την επιβεβαίωση της ευπάθειας.
Προκλήσεις Φορτωτικής Ισορροπίας: Οι διακομιστές front-end που λειτουργούν ως ισοσταθμιστές φορτίου μπορεί να διανέμουν αιτήματα σε διάφορα συστήματα back-end. Εάν τα "επίθεση" και "κανονικά" αιτήματα καταλήξουν σε διαφορετικά συστήματα, η επίθεση δεν θα επιτύχει. Αυτό το στοιχείο ισοσταθμιστή φορτίου μπορεί να απαιτήσει πολλές προσπάθειες για την επιβεβαίωση μιας ευπάθειας.
Ακούσια Επίδραση στους Χρήστες: Εάν η επίθεσή σας επηρεάσει κατά λάθος το αίτημα άλλου χρήστη (όχι το "κανονικό" αίτημα που στείλατε για ανίχνευση), αυτό υποδεικνύει ότι η επίθεσή σας επηρέασε έναν άλλο χρήστη της εφαρμογής. Η συνεχής δοκιμή θα μπορούσε να διαταράξει άλλους χρήστες, απαιτώντας προσεκτική προσέγγιση.
Μερικές φορές, οι front-end proxies επιβάλλουν μέτρα ασφαλείας, εξετάζοντας τα εισερχόμενα αιτήματα. Ωστόσο, αυτά τα μέτρα μπορούν να παρακαμφθούν εκμεταλλευόμενα το HTTP Request Smuggling, επιτρέποντας μη εξουσιοδοτημένη πρόσβαση σε περιορισμένα endpoints. Για παράδειγμα, η πρόσβαση στο /admin
μπορεί να απαγορεύεται εξωτερικά, με τον front-end proxy να μπλοκάρει ενεργά τέτοιες προσπάθειες. Ωστόσο, αυτός ο proxy μπορεί να παραλείψει να ελέγξει τα ενσωματωμένα αιτήματα μέσα σε ένα smuggled HTTP αίτημα, αφήνοντας ένα παραθυράκι για την παράκαμψη αυτών των περιορισμών.
Σκεφτείτε τα παρακάτω παραδείγματα που απεικονίζουν πώς το HTTP Request Smuggling μπορεί να χρησιμοποιηθεί για να παρακάμψει τους ελέγχους ασφαλείας front-end, στοχεύοντας συγκεκριμένα τη διαδρομή /admin
, η οποία συνήθως φυλάσσεται από τον front-end proxy:
Παράδειγμα CL.TE
Στην επίθεση CL.TE, η κεφαλίδα Content-Length
χρησιμοποιείται για το αρχικό αίτημα, ενώ το επόμενο ενσωματωμένο αίτημα χρησιμοποιεί την κεφαλίδα Transfer-Encoding: chunked
. Ο μεσολαβητής front-end επεξεργάζεται το αρχικό αίτημα POST
αλλά αποτυγχάνει να ελέγξει το ενσωματωμένο αίτημα GET /admin
, επιτρέποντας μη εξουσιοδοτημένη πρόσβαση στο μονοπάτι /admin
.
TE.CL Παράδειγμα
Αντίθετα, στην επίθεση TE.CL, το αρχικό POST
αίτημα χρησιμοποιεί Transfer-Encoding: chunked
, και το επόμενο ενσωματωμένο αίτημα επεξεργάζεται με βάση την κεφαλίδα Content-Length
. Παρόμοια με την επίθεση CL.TE, ο πρόξενος της εμπρός πλευράς παραβλέπει το λαθραίο αίτημα GET /admin
, παραχωρώντας ακούσια πρόσβαση στη περιορισμένη διαδρομή /admin
.
Οι εφαρμογές συχνά χρησιμοποιούν έναν διακομιστή εμπρός πλευράς για να τροποποιούν τα εισερχόμενα αιτήματα πριν τα περάσουν στον διακομιστή πίσω πλευράς. Μια τυπική τροποποίηση περιλαμβάνει την προσθήκη κεφαλίδων, όπως X-Forwarded-For: <IP του πελάτη>
, για να μεταφέρει τη διεύθυνση IP του πελάτη στον διακομιστή πίσω πλευράς. Η κατανόηση αυτών των τροποποιήσεων μπορεί να είναι κρίσιμη, καθώς μπορεί να αποκαλύψει τρόπους για να παρακαμφθούν οι προστασίες ή να αποκαλυφθούν κρυφές πληροφορίες ή σημεία πρόσβασης.
Για να ερευνήσετε πώς ένας πρόξενος τροποποιεί ένα αίτημα, εντοπίστε μια παράμετρο POST που ο διακομιστής πίσω πλευράς επαναλαμβάνει στην απάντηση. Στη συνέχεια, δημιουργήστε ένα αίτημα, χρησιμοποιώντας αυτή την παράμετρο τελευταία, παρόμοια με το εξής:
Σε αυτή τη δομή, τα επόμενα στοιχεία του αιτήματος προστίθενται μετά το search=
, το οποίο είναι η παράμετρος που αντανακλάται στην απάντηση. Αυτή η αντανάκλαση θα αποκαλύψει τις κεφαλίδες του επόμενου αιτήματος.
Είναι σημαντικό να ευθυγραμμιστεί η κεφαλίδα Content-Length
του εσωτερικού αιτήματος με το πραγματικό μήκος περιεχομένου. Είναι σκόπιμο να ξεκινήσετε με μια μικρή τιμή και να αυξάνετε σταδιακά, καθώς μια πολύ χαμηλή τιμή θα κόψει τα αντανακλώμενα δεδομένα, ενώ μια πολύ υψηλή τιμή μπορεί να προκαλέσει σφάλμα στο αίτημα.
Αυτή η τεχνική είναι επίσης εφαρμόσιμη στο πλαίσιο μιας ευπάθειας TE.CL, αλλά το αίτημα θα πρέπει να τερματίζεται με search=\r\n0
. Ανεξάρτητα από τους χαρακτήρες νέας γραμμής, οι τιμές θα προστεθούν στην παράμετρο αναζήτησης.
Αυτή η μέθοδος εξυπηρετεί κυρίως την κατανόηση των τροποποιήσεων του αιτήματος που γίνονται από τον μεσολαβητή front-end, εκτελώντας ουσιαστικά μια αυτοκατευθυνόμενη έρευνα.
Είναι εφικτό να συλληφθούν τα αιτήματα του επόμενου χρήστη προσθέτοντας ένα συγκεκριμένο αίτημα ως την τιμή μιας παραμέτρου κατά τη διάρκεια μιας λειτουργίας POST. Να πώς μπορεί να επιτευχθεί αυτό:
Με την προσθήκη του παρακάτω αιτήματος ως την τιμή μιας παραμέτρου, μπορείτε να αποθηκεύσετε το αίτημα του επόμενου πελάτη:
Σε αυτό το σενάριο, η παράμετρος σχολίου προορίζεται να αποθηκεύσει τα περιεχόμενα στην ενότητα σχολίων μιας ανάρτησης σε μια δημόσια προσβάσιμη σελίδα. Ως εκ τούτου, τα περιεχόμενα του επόμενου αιτήματος θα εμφανιστούν ως σχόλιο.
Ωστόσο, αυτή η τεχνική έχει περιορισμούς. Γενικά, καταγράφει δεδομένα μόνο μέχρι τον διαχωριστή παραμέτρου που χρησιμοποιείται στο λαθραίο αίτημα. Για υποβολές φορμών κωδικοποιημένων URL, αυτός ο διαχωριστής είναι ο χαρακτήρας &
. Αυτό σημαίνει ότι το καταγεγραμμένο περιεχόμενο από το αίτημα του θύματος θα σταματήσει στον πρώτο &
, ο οποίος μπορεί ακόμη και να είναι μέρος της συμβολοσειράς ερωτήματος.
Επιπλέον, αξίζει να σημειωθεί ότι αυτή η προσέγγιση είναι επίσης βιώσιμη με μια ευπάθεια TE.CL. Σε τέτοιες περιπτώσεις, το αίτημα θα πρέπει να ολοκληρώνεται με search=\r\n0
. Ανεξάρτητα από τους χαρακτήρες νέας γραμμής, οι τιμές θα προστεθούν στην παράμετρο αναζήτησης.
Το HTTP Request Smuggling μπορεί να αξιοποιηθεί για να εκμεταλλευτεί ευάλωτες ιστοσελίδες σε Reflected XSS, προσφέροντας σημαντικά πλεονεκτήματα:
Η αλληλεπίδραση με τους στόχους χρήστες είναι μη απαραίτητη.
Επιτρέπει την εκμετάλλευση του XSS σε μέρη του αιτήματος που είναι κανονικά μη προσβάσιμα, όπως οι κεφαλίδες αιτήματος HTTP.
Σε σενάρια όπου μια ιστοσελίδα είναι ευάλωτη σε Reflected XSS μέσω της κεφαλίδας User-Agent, το παρακάτω payload δείχνει πώς να εκμεταλλευτείτε αυτήν την ευπάθεια:
Αυτό το payload είναι δομημένο για να εκμεταλλευτεί την ευπάθεια με:
Να ξεκινήσει ένα POST
αίτημα, φαινομενικά τυπικό, με ένα Transfer-Encoding: chunked
header για να υποδείξει την αρχή της λαθραίας μεταφοράς.
Να ακολουθήσει με ένα 0
, που σηματοδοτεί το τέλος του σώματος του chunked μηνύματος.
Στη συνέχεια, εισάγεται ένα λαθραίο GET
αίτημα, όπου το User-Agent
header είναι εγχυμένο με ένα script, <script>alert(1)</script>
, ενεργοποιώντας το XSS όταν ο διακομιστής επεξεργάζεται αυτό το επόμενο αίτημα.
Με την παραποίηση του User-Agent
μέσω της λαθραίας μεταφοράς, το payload παρακάμπτει τους κανονικούς περιορισμούς αιτημάτων, εκμεταλλευόμενο έτσι την ευπάθεια Reflected XSS με έναν μη τυπικό αλλά αποτελεσματικό τρόπο.
Σε περίπτωση που το περιεχόμενο του χρήστη αντανακλάται σε μια απάντηση με Content-type
όπως text/plain
, αποτρέποντας την εκτέλεση του XSS. Αν ο διακομιστής υποστηρίζει HTTP/0.9 μπορεί να είναι δυνατό να παρακαμφθεί αυτό!
Η έκδοση HTTP/0.9 ήταν προηγούμενη της 1.0 και χρησιμοποιεί μόνο GET ρήματα και δεν απαντά με headers, μόνο το σώμα.
Σε αυτή τη γραφή, αυτό εκμεταλλεύτηκε με μια λαθραία μεταφορά αιτήματος και ένα ευάλωτο endpoint που θα απαντήσει με την είσοδο του χρήστη για να λαθραία μεταφέρει ένα αίτημα με HTTP/0.9. Η παράμετρος που θα αντανακλαστεί στην απάντηση περιείχε μια ψεύτικη απάντηση HTTP/1.1 (με headers και σώμα) έτσι ώστε η απάντηση να περιέχει έγκυρο εκτελέσιμο JS κώδικα με Content-Type
text/html
.
Οι εφαρμογές συχνά ανακατευθύνουν από μια διεύθυνση URL σε άλλη χρησιμοποιώντας το όνομα κεντρικού υπολογιστή από το Host
header στη διεύθυνση URL ανακατεύθυνσης. Αυτό είναι κοινό με διακομιστές ιστού όπως ο Apache και ο IIS. Για παράδειγμα, η αίτηση ενός φακέλου χωρίς τελικό slash έχει ως αποτέλεσμα μια ανακατεύθυνση για να συμπεριληφθεί το slash:
Αποτελέσματα σε:
Αν και φαίνεται αβλαβές, αυτή η συμπεριφορά μπορεί να χειραγωγηθεί χρησιμοποιώντας HTTP request smuggling για να ανακατευθύνει τους χρήστες σε έναν εξωτερικό ιστότοπο. Για παράδειγμα:
Αυτό το λαθραίο αίτημα θα μπορούσε να προκαλέσει την ανακατεύθυνση του επόμενου επεξεργασμένου αιτήματος χρήστη σε μια ιστοσελίδα που ελέγχεται από τον επιτιθέμενο:
Αποτελέσματα σε:
In this scenario, a user's request for a JavaScript file is hijacked. The attacker can potentially compromise the user by serving malicious JavaScript in response.
Η δηλητηρίαση της μνήμης cache του ιστού μπορεί να εκτελεστεί αν οποιοδήποτε στοιχείο της υποδομής front-end αποθηκεύει περιεχόμενο, συνήθως για να βελτιώσει την απόδοση. Με την παραποίηση της απάντησης του διακομιστή, είναι δυνατόν να δηλητηριαστεί η cache.
Προηγουμένως, παρατηρήσαμε πώς οι απαντήσεις του διακομιστή θα μπορούσαν να τροποποιηθούν για να επιστρέψουν ένα σφάλμα 404 (ανατρέξτε σε Basic Examples). Ομοίως, είναι εφικτό να ξεγελάσουμε τον διακομιστή ώστε να παραδώσει περιεχόμενο /index.html
ως απάντηση σε ένα αίτημα για /static/include.js
. Ως αποτέλεσμα, το περιεχόμενο /static/include.js
αντικαθίσταται στη μνήμη cache με αυτό του /index.html
, καθιστώντας το /static/include.js
μη προσβάσιμο στους χρήστες, κάτι που μπορεί να οδηγήσει σε Άρνηση Υπηρεσίας (DoS).
Αυτή η τεχνική γίνεται ιδιαίτερα ισχυρή αν ανακαλυφθεί μια ευπάθεια Open Redirect ή αν υπάρχει ανακατεύθυνση στον ιστό σε μια ανοιχτή ανακατεύθυνση. Τέτοιες ευπάθειες μπορούν να εκμεταλλευτούν για να αντικαταστήσουν το αποθηκευμένο περιεχόμενο του /static/include.js
με ένα σενάριο υπό τον έλεγχο του επιτιθέμενου, επιτρέποντας ουσιαστικά μια εκτενή επίθεση Cross-Site Scripting (XSS) σε όλους τους πελάτες που ζητούν το ενημερωμένο /static/include.js
.
Παρακάτω είναι μια απεικόνιση της εκμετάλλευσης δηλητηρίασης cache σε συνδυασμό με ανακατεύθυνση στον ιστό σε ανοιχτή ανακατεύθυνση. Ο στόχος είναι να τροποποιηθεί το περιεχόμενο της cache του /static/include.js
για να εξυπηρετήσει κώδικα JavaScript που ελέγχεται από τον επιτιθέμενο:
Σημειώστε το ενσωματωμένο αίτημα που στοχεύει το /post/next?postId=3
. Αυτό το αίτημα θα ανακατευθυνθεί στο /post?postId=4
, χρησιμοποιώντας την τιμή κεφαλίδας Host για να προσδιορίσει το domain. Με την τροποποίηση της κεφαλίδας Host, ο επιτιθέμενος μπορεί να ανακατευθύνει το αίτημα στο domain του (on-site redirect to open redirect).
Μετά από επιτυχή socket poisoning, θα πρέπει να ξεκινήσει ένα GET request για το /static/include.js
. Αυτό το αίτημα θα μολυνθεί από το προηγούμενο αίτημα on-site redirect to open redirect και θα ανακτήσει το περιεχόμενο του script που ελέγχεται από τον επιτιθέμενο.
Στη συνέχεια, οποιοδήποτε αίτημα για το /static/include.js
θα εξυπηρετεί το αποθηκευμένο περιεχόμενο του script του επιτιθέμενου, εκκινώντας αποτελεσματικά μια ευρεία επίθεση XSS.
Ποια είναι η διαφορά μεταξύ web cache poisoning και web cache deception;
Στο web cache poisoning, ο επιτιθέμενος προκαλεί την εφαρμογή να αποθηκεύσει κάποιο κακόβουλο περιεχόμενο στην cache, και αυτό το περιεχόμενο εξυπηρετείται από την cache σε άλλους χρήστες της εφαρμογής.
Στο web cache deception, ο επιτιθέμενος προκαλεί την εφαρμογή να αποθηκεύσει κάποιο ευαίσθητο περιεχόμενο που ανήκει σε άλλο χρήστη στην cache, και ο επιτιθέμενος στη συνέχεια ανακτά αυτό το περιεχόμενο από την cache.
Ο επιτιθέμενος δημιουργεί ένα μυστικό αίτημα που ανακτά ευαίσθητο περιεχόμενο συγκεκριμένο για τον χρήστη. Σκεφτείτε το παρακάτω παράδειγμα:
Αν αυτή η λαθραία αίτηση δηλητηριάσει μια είσοδο cache που προορίζεται για στατικό περιεχόμενο (π.χ., /someimage.png
), τα ευαίσθητα δεδομένα του θύματος από το /private/messages
μπορεί να αποθηκευτούν στην είσοδο cache του στατικού περιεχομένου. Ως εκ τούτου, ο επιτιθέμενος θα μπορούσε ενδεχομένως να ανακτήσει αυτά τα αποθηκευμένα ευαίσθητα δεδομένα.
Σε αυτή την ανάρτηση προτείνεται ότι αν ο διακομιστής έχει ενεργοποιημένη τη μέθοδο TRACE, θα μπορούσε να είναι δυνατό να την καταχραστεί με ένα HTTP Request Smuggling. Αυτό συμβαίνει επειδή αυτή η μέθοδος θα ανακλά οποιαδήποτε κεφαλίδα σταλεί στον διακομιστή ως μέρος του σώματος της απάντησης. Για παράδειγμα:
Θα στείλει μια απάντηση όπως:
Ένα παράδειγμα για το πώς να εκμεταλλευτείτε αυτή τη συμπεριφορά θα ήταν να λαθρέψετε πρώτα ένα HEAD request. Αυτό το αίτημα θα απαντηθεί μόνο με τα headers ενός GET request (Content-Type
μεταξύ αυτών). Και να λαθρέψετε άμεσα μετά το HEAD ένα TRACE request, το οποίο θα είναι αντανάκλαση των δεδομένων που στάλθηκαν.
Καθώς η απάντηση του HEAD θα περιέχει ένα header Content-Length
, η απάντηση του TRACE request θα θεωρείται ως το σώμα της απάντησης του HEAD, επομένως θα ανακλά τυχαία δεδομένα στην απάντηση.
Αυτή η απάντηση θα σταλεί στο επόμενο αίτημα μέσω της σύνδεσης, οπότε αυτό θα μπορούσε να χρησιμοποιηθεί σε ένα cached JS αρχείο για παράδειγμα για να εισάγει τυχαίο JS κώδικα.
Συνεχίστε ακολουθώντας αυτή την ανάρτηση προτείνεται ένας άλλος τρόπος για να εκμεταλλευτείτε τη μέθοδο TRACE. Όπως σχολιάστηκε, λαθρεύοντας ένα HEAD request και ένα TRACE request είναι δυνατό να ελέγξετε κάποια ανακλώμενα δεδομένα στην απάντηση του HEAD request. Το μήκος του σώματος του HEAD request υποδεικνύεται βασικά στο header Content-Length και σχηματίζεται από την απάντηση στο TRACE request.
Επομένως, η νέα ιδέα θα ήταν ότι, γνωρίζοντας αυτό το Content-Length και τα δεδομένα που δίνονται στην απάντηση του TRACE, είναι δυνατό να γίνει η απάντηση του TRACE να περιέχει μια έγκυρη HTTP απάντηση μετά το τελευταίο byte του Content-Length, επιτρέποντας σε έναν επιτιθέμενο να ελέγξει πλήρως το αίτημα στην επόμενη απάντηση (η οποία θα μπορούσε να χρησιμοποιηθεί για να εκτελέσει μια δηλητηρίαση cache).
Παράδειγμα:
Θα δημιουργήσει αυτές τις απαντήσεις (σημειώστε πώς η απάντηση HEAD έχει ένα Content-Length που καθιστά την απάντηση TRACE μέρος του σώματος της HEAD και μόλις τελειώσει το Content-Length της HEAD, μια έγκυρη HTTP απάντηση διαρρέει):
Έχετε βρει κάποια ευπάθεια HTTP Request Smuggling και δεν ξέρετε πώς να την εκμεταλλευτείτε. Δοκιμάστε αυτές τις άλλες μεθόδους εκμετάλλευσης:
HTTP Response Smuggling / DesyncBrowser HTTP Request Smuggling (Client Side)
Request Smuggling σε HTTP/2 Downgrades
Από https://hipotermia.pw/bb/http-desync-idor
Από: https://hipotermia.pw/bb/http-desync-account-takeover
https://github.com/bahruzjabiyev/t-reqs-http-fuzzer: Αυτό το εργαλείο είναι ένας HTTP Fuzzer βασισμένος στη γραμματική, χρήσιμο για να βρείτε παράξενες διαφορές στο request smuggling.
Αποκτήστε την προοπτική ενός χάκερ για τις διαδικτυακές σας εφαρμογές, το δίκτυο και το cloud
Βρείτε και αναφέρετε κρίσιμες, εκμεταλλεύσιμες ευπάθειες με πραγματικό επιχειρηματικό αντίκτυπο. Χρησιμοποιήστε τα 20+ προσαρμοσμένα εργαλεία μας για να χαρτογραφήσετε την επιφάνεια επίθεσης, να βρείτε ζητήματα ασφαλείας που σας επιτρέπουν να κλιμακώσετε προνόμια και να χρησιμοποιήσετε αυτοματοποιημένες εκμεταλλεύσεις για να συλλέξετε βασικά αποδεικτικά στοιχεία, μετατρέποντας τη σκληρή σας δουλειά σε πειστικές αναφορές.
Μάθετε & εξασκηθείτε στο AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE) Μάθετε & εξασκηθείτε στο GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)