Mach는 작업을 리소스 공유의 가장 작은 단위로 사용하며, 각 작업에는 여러 스레드가 포함될 수 있습니다. 이러한 작업과 스레드는 1:1로 POSIX 프로세스와 스레드에 매핑됩니다.
작업 간 통신은 Mach Inter-Process Communication (IPC)을 통해 이루어지며, 커널이 관리하는 메시지 큐처럼 작동하는 포트 간에 메시지가 전송됩니다.
포트는 Mach IPC의 기본 요소입니다. 메시지를 보내고 받는 데 사용할 수 있습니다.
각 프로세스에는 IPC 테이블이 있어 프로세스의 mach 포트를 찾을 수 있습니다. Mach 포트의 이름은 실제로 숫자(커널 객체에 대한 포인터)입니다.
프로세스는 또한 다른 작업에게 일부 권한을 가진 포트 이름을 보낼 수 있으며, 커널은 이를 다른 작업의 IPC 테이블에 등록합니다.
포트 권한
작업이 수행할 수 있는 작업을 정의하는 포트 권한은 이 통신에 중요합니다. 가능한 포트 권한은 (여기에서 정의된 내용):
수신 권한은 포트로 전송된 메시지를 수신할 수 있게 합니다. Mach 포트는 MPSC (다중 생산자, 단일 소비자) 큐이므로 전체 시스템에서 각 포트에 대해 하나의 수신 권한만 있을 수 있습니다 (여러 프로세스가 하나의 파이프의 읽기 끝에 대한 파일 디스크립터를 모두 보유할 수 있는 파이프와는 달리).
수신 권한을 가진 작업은 메시지를 수신하고 송신 권한을 생성할 수 있어 메시지를 보낼 수 있습니다. 처음에는 자체 작업만 수신 권한을 가집니다.
수신 권한의 소유자가 죽거나 종료하면 송신 권한이 무용지물이 됩니다 (죽은 이름).
송신 권한은 포트로 메시지를 보낼 수 있게 합니다.
송신 권한은 복제될 수 있어 송신 권한을 가진 작업이 권한을 복제하고 제3의 작업에게 부여할 수 있습니다.
포트 권한은 Mac 메시지를 통해 전달될 수도 있습니다.
한 번 송신 권한은 포트로 한 번의 메시지를 보낼 수 있고 그 후 사라집니다.
이 권한은 복제될 수 없지만 이동될 수 있습니다.
포트 집합 권한은 단일 포트가 아닌 _포트 세트_를 나타냅니다. 포트 세트에서 메시지를 디큐하는 것은 그 포트가 포함하는 포트 중 하나에서 메시지를 디큐합니다. 포트 세트는 Unix의 select/poll/epoll/kqueue와 매우 유사하게 여러 포트에서 동시에 수신할 수 있습니다.
죽은 이름은 실제 포트 권한이 아니라 단순히 자리 표시자입니다. 포트가 파괴되면 포트에 대한 모든 기존 포트 권한이 죽은 이름으로 변합니다.
작업은 다른 작업에게 송신 권한을 전달하여 메시지를 다시 보낼 수 있습니다. 송신 권한은 복제될 수 있어 작업이 권한을 복제하고 제3의 작업에게 권한을 부여할 수 있습니다. 이는 부트스트랩 서버라는 중간 프로세스와 결합되어 작업 간 효과적인 통신을 가능하게 합니다.
파일 포트
파일 포트는 Mac 포트(맥 포트 권한을 사용)에 파일 디스크립터를 캡슐화할 수 있습니다. 주어진 FD에서 fileport_makeport를 사용하여 fileport를 만들고 fileport_makefd를 사용하여 fileport에서 FD를 만들 수 있습니다.
통신 설정
이전에 언급했듯이 Mach 메시지를 사용하여 권한을 보낼 수 있지만, 이미 Mach 메시지를 보낼 권한이 없는 경우 권한을 보내려면 이미 권한이 있어야 합니다. 그렇다면 첫 번째 통신은 어떻게 설정됩니까?
이를 위해 부트스트랩 서버(mac의 launchd)가 관여됩니다. 누구나 부트스트랩 서버에 SEND 권한을 얻을 수 있으므로, 다른 프로세스에 메시지를 보낼 권한을 요청할 수 있습니다:
작업 A는 새 포트를 생성하여 그것에 대한 수신 권한을 얻습니다.
수신 권한을 보유한 작업 A는 포트에 대한 송신 권한을 생성합니다.
작업 A는 부트스트랩 서버와 연결을 설정하고, 처음에 생성한 포트에 대한 송신 권한을 부트스트랩 서버에 보냅니다.
누구나 부트스트랩 서버에 SEND 권한을 얻을 수 있습니다.
작업 A는 부트스트랩 서버에 bootstrap_register 메시지를 보내 **com.apple.taska**와 같은 이름으로 지정된 포트를 연결합니다.
작업 B는 서비스 이름에 대한 부트스트랩 룩업을 실행하기 위해 부트스트랩 서버와 상호 작용합니다 (bootstrap_lookup). 따라서 부트스트랩 서버가 응답하려면 작업 B는 룩업 메시지 내에서 이전에 생성한 포트에 대한 SEND 권한을 부트스트랩 서버에 보냅니다. 룩업이 성공하면 서버는 Task A로부터 받은 SEND 권한을 복제하고 Task B에게 전송합니다.
누구나 부트스트랩 서버에 SEND 권한을 얻을 수 있습니다.
이 SEND 권한으로 작업 B는 작업 A에게 메시지를 보낼 수 있습니다.
양방향 통신을 위해 일반적으로 작업 B는 수신 권한과 송신 권한이 있는 새 포트를 생성하고 송신 권한을 작업 A에게 제공하여 작업 B에게 메시지를 보낼 수 있게 합니다 (양방향 통신).
부트스트랩 서버는 작업이 주장하는 서비스 이름을 인증할 수 없습니다. 이는 작업이 잠재적으로 시스템 작업을 가장할 수 있음을 의미합니다. 예를 들어 권한 서비스 이름을 가장하여 모든 요청을 승인할 수 있습니다.
그런 다음 Apple은 시스템 제공 서비스의 이름을 안전한 구성 파일에 저장합니다. 이 파일은 SIP로 보호된 디렉토리인 /System/Library/LaunchDaemons 및 /System/Library/LaunchAgents에 있습니다. 각 서비스 이름 옆에는 관련된 이진 파일도 저장됩니다. 부트스트랩 서버는 이러한 서비스 이름마다 수신 권한을 생성하고 보유합니다.
이러한 사전 정의된 서비스에 대해서는 룩업 프로세스가 약간 다릅니다. 서비스 이름이 조회될 때, launchd는 서비스를 동적으로 시작합니다. 새로운 워크플로우는 다음과 같습니다:
작업 B는 서비스 이름에 대한 부트스트랩 룩업을 시작합니다.
launchd는 작업이 실행 중인지 확인하고 실행 중이 아니면 시작합니다.
작업 A (서비스)는 부트스트랩 체크인(bootstrap_check_in())을 수행합니다. 여기서 부트스트랩 서버는 SEND 권한을 생성하고 보유하며 수신 권한을 작업 A에게 전달합니다.
launchd는 SEND 권한을 복제하고 작업 B에게 전송합니다.
작업 B는 수신 권한과 송신 권한이 있는 새 포트를 생성하고 송신 권한을 작업 A에게 제공하여 작업 B에게 메시지를 보낼 수 있게 합니다 (양방향 통신).
그러나 이 프로세스는 사전 정의된 시스템 작업에만 적용됩니다. 비시스템 작업은 여전히 처음에 설명한 대로 작동하며, 이는 가장할 수 있는 가능성을 열어둘 수 있습니다.
따라서 launchd가 절대로 충돌해서는 안 되며, 그렇게 되면 전체 시스템이 충돌합니다.
mach_msg 함수는 본질적으로 시스템 호출로, Mach 메시지를 보내고 받기 위해 사용됩니다. 이 함수는 보내야 하는 메시지를 초기 인자로 필요로 합니다. 이 메시지는 mach_msg_header_t 구조체로 시작해야 하며 실제 메시지 내용이 뒤따라야 합니다. 이 구조체는 다음과 같이 정의됩니다:
프로세스가 _수신 권한을 보유하면 Mach 포트에서 메시지를 수신할 수 있습니다. 반대로 보내는 쪽(sender)은 _송신 권한 또는 _일회용 송신 권한_을 부여받습니다. 일회용 송신 권한은 한 번의 메시지를 보낸 후에 무효화됩니다.
초기 필드 **msgh_bits**는 비트맵입니다:
첫 번째 비트(가장 중요함)는 메시지가 복잡함을 나타내는 데 사용됩니다(자세한 내용은 아래 참조)
3번째와 4번째 비트는 커널에 의해 사용됩니다
두 번째 바이트의 가장 낮은 5개 비트는 **바우처(voucher)**에 사용할 수 있습니다: 키/값 조합을 보내는 또 다른 유형의 포트입니다.
세 번째 바이트의 가장 낮은 5개 비트는 로컬 포트에 사용할 수 있습니다
네 번째 바이트의 가장 낮은 5개 비트는 원격 포트에 사용할 수 있습니다
바우처, 로컬 및 원격 포트에 지정할 수 있는 유형은 다음과 같습니다(mach/message.h 참조):
#defineMACH_MSG_TYPE_MOVE_RECEIVE16 /* Must hold receive right */#defineMACH_MSG_TYPE_MOVE_SEND17 /* Must hold send right(s) */#defineMACH_MSG_TYPE_MOVE_SEND_ONCE18 /* Must hold sendonce right */#defineMACH_MSG_TYPE_COPY_SEND19 /* Must hold send right(s) */#defineMACH_MSG_TYPE_MAKE_SEND20 /* Must hold receive right */#defineMACH_MSG_TYPE_MAKE_SEND_ONCE21 /* Must hold receive right */#defineMACH_MSG_TYPE_COPY_RECEIVE22 /* NOT VALID */#defineMACH_MSG_TYPE_DISPOSE_RECEIVE24 /* must hold receive right */#defineMACH_MSG_TYPE_DISPOSE_SEND25 /* must hold send right(s) */#defineMACH_MSG_TYPE_DISPOSE_SEND_ONCE26 /* must hold sendonce right */
예를 들어, MACH_MSG_TYPE_MAKE_SEND_ONCE는 이 포트를 위해 파생 및 전송되어야 하는 한 번만 보내기 권한을 나타내는 데 사용될 수 있습니다. 또한 수신자가 응답을 보낼 수 없도록 하려면 MACH_PORT_NULL을 지정할 수 있습니다.
쉬운 양방향 통신을 위해 프로세스는 메시지 헤더의 응답 포트(msgh_local_port)라고 불리는 mach 포트를 지정할 수 있으며, 메시지의 수신자는 이 메시지에 대한 응답을 보낼 수 있습니다.
이러한 종류의 양방향 통신은 응답을 기대하는 XPC 메시지에서 사용되며 (xpc_connection_send_message_with_reply 및 xpc_connection_send_message_with_reply_sync), 일반적으로 서로 다른 포트가 생성되어 양방향 통신을 생성하는 방법에 대해 이전에 설명한 대로 사용됩니다.
이름은 포트에 기본적으로 지정된 이름입니다 (첫 3바이트에서 증가하는 방법을 확인하십시오). **ipc-object**는 포트의 가려진 고유 식별자입니다.
또한 send 권한만 있는 포트는 해당 소유자를 식별하는 데 사용됨을 주목하십시오 (포트 이름 + pid).
또한 **+**를 사용하여 동일한 포트에 연결된 다른 작업을 나타내는 방법에 주목하십시오.
또한 procesxp를 사용하여 등록된 서비스 이름도 볼 수 있습니다 (SIP가 비활성화되어 있어 com.apple.system-task-port가 필요한 경우):
sender가 포트를 할당하고 org.darlinghq.example 이름에 대한 send right를 생성하여 이를 부트스트랩 서버에 보낸 것을 주목하십시오. 수신자는 해당 이름에 대한 send right를 요청하고 이를 사용하여 메시지를 보냈습니다.
// Code from https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html// gcc receiver.c -o receiver#include<stdio.h>#include<mach/mach.h>#include<servers/bootstrap.h>intmain() {// Create a new port.mach_port_t port;kern_return_t kr =mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE,&port);if (kr != KERN_SUCCESS) {printf("mach_port_allocate() failed with code 0x%x\n", kr);return1;}printf("mach_port_allocate() created port right name %d\n", port);// Give us a send right to this port, in addition to the receive right.kr =mach_port_insert_right(mach_task_self(), port, port, MACH_MSG_TYPE_MAKE_SEND);if (kr != KERN_SUCCESS) {printf("mach_port_insert_right() failed with code 0x%x\n", kr);return1;}printf("mach_port_insert_right() inserted a send right\n");// Send the send right to the bootstrap server, so that it can be looked up by other processes.kr =bootstrap_register(bootstrap_port,"org.darlinghq.example", port);if (kr != KERN_SUCCESS) {printf("bootstrap_register() failed with code 0x%x\n", kr);return1;}printf("bootstrap_register()'ed our port\n");// Wait for a message.struct {mach_msg_header_t header;char some_text[10];int some_number;mach_msg_trailer_t trailer;} message;kr =mach_msg(&message.header, // Same as (mach_msg_header_t *) &message.MACH_RCV_MSG, // Options. We're receiving a message.0, // Size of the message being sent, if sending.sizeof(message), // Size of the buffer for receiving.port, // The port to receive a message on.MACH_MSG_TIMEOUT_NONE,MACH_PORT_NULL // Port for the kernel to send notifications about this message to.);if (kr != KERN_SUCCESS) {printf("mach_msg() failed with code 0x%x\n", kr);return1;}printf("Got a message\n");message.some_text[9] =0;printf("Text: %s, number: %d\n",message.some_text,message.some_number);}
sender.c 파일
// Code from https://docs.darlinghq.org/internals/macos-specifics/mach-ports.html// gcc sender.c -o sender#include<stdio.h>#include<mach/mach.h>#include<servers/bootstrap.h>intmain() {// Lookup the receiver port using the bootstrap server.mach_port_t port;kern_return_t kr =bootstrap_look_up(bootstrap_port,"org.darlinghq.example",&port);if (kr != KERN_SUCCESS) {printf("bootstrap_look_up() failed with code 0x%x\n", kr);return1;}printf("bootstrap_look_up() returned port right name %d\n", port);// Construct our message.struct {mach_msg_header_t header;char some_text[10];int some_number;} message;message.header.msgh_bits =MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND,0);message.header.msgh_remote_port = port;message.header.msgh_local_port = MACH_PORT_NULL;