Très simplement, cet outil nous aidera à trouver des valeurs pour les variables qui doivent satisfaire certaines conditions et les calculer à la main serait très ennuyeux. Par conséquent, vous pouvez indiquer à Z3 les conditions que les variables doivent satisfaire et il trouvera certaines valeurs (si possible).
#pip3 install z3-solverfrom z3 import*s =Solver()#The solver will be given the conditionsx =Bool("x")#Declare the symbos x, y and zy =Bool("y")z =Bool("z")# (x or y or !z) and ys.add(And(Or(x,y,Not(z)),y))s.check()#If response is "sat" then the model is satifable, if "unsat" something is wrongprint(s.model())#Print valid values to satisfy the model
Entiers/Simplifier/Réels
from z3 import*x =Int('x')y =Int('y')#Simplify a "complex" ecuationprint(simplify(And(x +1>=3, x**2+ x**2+ y**2+2>=5)))#And(x >= 2, 2*x**2 + y**2 >= 3)#Note that Z3 is capable to treat irrational numbers (An irrational algebraic number is a root of a polynomial with integer coefficients. Internally, Z3 represents all these numbers precisely.)#so you can get the decimals you need from the solutionr1 =Real('r1')r2 =Real('r2')#Solve the ecuationprint(solve(r1**2+ r2**2==3, r1**3==2))#Solve the ecuation with 30 decimalsset_option(precision=30)print(solve(r1**2+ r2**2==3, r1**3==2))
Impression du modèle
from z3 import*x, y, z =Reals('x y z')s =Solver()s.add(x >1, y >1, x + y >3, z - x <10)s.check()m = s.model()print ("x = %s"% m[x])for d in m.decls():print("%s = %s"% (d.name(), m[d]))
Arithmétique machine
Les processeurs modernes et les langages de programmation grand public utilisent l'arithmétique sur des vecteurs de bits de taille fixe. L'arithmétique machine est disponible dans Z3Py sous forme de vecteurs de bits.
from z3 import*x =BitVec('x', 16)#Bit vector variable "x" of length 16 bity =BitVec('y', 16)e =BitVecVal(10, 16)#Bit vector with value 10 of length 16bitsa =BitVecVal(-1, 16)b =BitVecVal(65535, 16)print(simplify(a == b))#This is True!a =BitVecVal(-1, 32)b =BitVecVal(65535, 32)print(simplify(a == b))#This is False
Nombres signés/non signés
Z3 fournit des versions signées spéciales des opérations arithmétiques où il est important de savoir si le vecteur de bits est traité comme signé ou non signé. En Z3Py, les opérateurs <, <=, >, >=, /, % et >> correspondent aux versions signées. Les opérateurs non signés correspondants sont ULT, ULE, UGT, UGE, UDiv, URem et LShR.
from z3 import*# Create to bit-vectors of size 32x, y =BitVecs('x y', 32)solve(x + y ==2, x >0, y >0)# Bit-wise operators# & bit-wise and# | bit-wise or# ~ bit-wise notsolve(x & y ==~y)solve(x <0)# using unsigned version of <solve(ULT(x, 0))
Fonctions
Les fonctions interprétées telles que l'arithmétique où la fonction + a une interprétation standard fixe (elle ajoute deux nombres). Les fonctions non interprétées et les constantes sont maximalement flexibles; elles permettent toute interprétation qui est cohérente avec les contraintes sur la fonction ou la constante.
Exemple : f appliqué deux fois à x donne à nouveau x, mais f appliqué une fois à x est différent de x.
from z3 import*x =Int('x')y =Int('y')f =Function('f', IntSort(), IntSort())s =Solver()s.add(f(f(x)) == x, f(x) == y, x != y)s.check()m = s.model()print("f(f(x)) =", m.evaluate(f(f(x))))print("f(x) =", m.evaluate(f(x)))print(m.evaluate(f(2)))s.add(f(x) ==4)#Find the value that generates 4 as responses.check()print(m.model())
Exemples
Résolveur de Sudoku
# 9x9 matrix of integer variablesX = [ [ Int("x_%s_%s"% (i+1, j+1))for j inrange(9) ]for i inrange(9) ]# each cell contains a value in {1, ..., 9}cells_c = [ And(1<= X[i][j], X[i][j] <=9)for i inrange(9)for j inrange(9) ]# each row contains a digit at most oncerows_c = [ Distinct(X[i])for i inrange(9) ]# each column contains a digit at most oncecols_c = [ Distinct([ X[i][j] for i inrange(9) ])for j inrange(9) ]# each 3x3 square contains a digit at most oncesq_c = [ Distinct([ X[3*i0 + i][3*j0 + j]for i inrange(3) for j inrange(3) ])for i0 inrange(3)for j0 inrange(3) ]sudoku_c = cells_c + rows_c + cols_c + sq_c# sudoku instance, we use '0' for empty cellsinstance = ((0,0,0,0,9,4,0,3,0),(0,0,0,5,1,0,0,0,7),(0,8,9,0,0,0,0,4,0),(0,0,0,0,0,0,2,0,8),(0,6,0,2,0,1,0,5,0),(1,0,2,0,0,0,0,0,0),(0,7,0,0,0,0,5,2,0),(9,0,0,0,6,5,0,0,0),(0,4,0,9,7,0,0,0,0))instance_c = [ If(instance[i][j] ==0,True,X[i][j] == instance[i][j])for i inrange(9)for j inrange(9) ]s =Solver()s.add(sudoku_c + instance_c)if s.check()== sat:m = s.model()r = [ [ m.evaluate(X[i][j])for j inrange(9) ]for i inrange(9) ]print_matrix(r)else:print"failed to solve"