iOS Exploiting
Fisiese gebruik-na-vry
This is a summary from the post from https://alfiecg.uk/2024/09/24/Kernel-exploit.html moreover further information about exploit using this technique can be found in https://github.com/felix-pb/kfd
Geheuebestuur in XNU
The virtuele geheue-adresruimte for user processes on iOS spans from 0x0 to 0x8000000000. However, these addresses don’t directly map to physical memory. Instead, the kernel uses bladsy tabelle to translate virtual addresses into actual fisiese adresse.
Vlakke van Bladsy Tabels in iOS
Bladsy tabelle is hiërargies georganiseer in drie vlakke:
L1 Bladsy Tabel (Vlak 1):
Each entry here represents a large range of virtual memory.
It covers 0x1000000000 bytes (or 256 GB) of virtual memory.
L2 Bladsy Tabel (Vlak 2):
An entry here represents a smaller region of virtual memory, specifically 0x2000000 bytes (32 MB).
An L1 entry may point to an L2 table if it can't map the entire region itself.
L3 Bladsy Tabel (Vlak 3):
This is the finest level, where each entry maps a single 4 KB memory page.
An L2 entry may point to an L3 table if more granular control is needed.
Kaarting Virtuele na Fisiese Geheue
Direkte Kaarting (Blok Kaarting):
Some entries in a page table directly map a range of virtual addresses to a contiguous range of physical addresses (like a shortcut).
Wysiger na Kind Bladsy Tabel:
If finer control is needed, an entry in one level (e.g., L1) can point to a kind bladsy tabel at the next level (e.g., L2).
Voorbeeld: Kaarting 'n Virtuele Adres
Let’s say you try to access the virtual address 0x1000000000:
L1 Tabel:
The kernel checks the L1 page table entry corresponding to this virtual address. If it has a pointer to an L2 page table, it goes to that L2 table.
L2 Tabel:
The kernel checks the L2 page table for a more detailed mapping. If this entry points to an L3 page table, it proceeds there.
L3 Tabel:
The kernel looks up the final L3 entry, which points to the fisiese adres of the actual memory page.
Voorbeeld van Adres Kaarting
If you write the physical address 0x800004000 into the first index of the L2 table, then:
Virtual addresses from 0x1000000000 to 0x1002000000 map to physical addresses from 0x800004000 to 0x802004000.
This is a blok kaarting at the L2 level.
Alternatively, if the L2 entry points to an L3 table:
Each 4 KB page in the virtual address range 0x1000000000 -> 0x1002000000 would be mapped by individual entries in the L3 table.
Fisiese gebruik-na-vry
A fisiese gebruik-na-vry (UAF) occurs when:
A process alloceer some memory as leesbaar en skryfbaar.
The bladsy tabelle are updated to map this memory to a specific physical address that the process can access.
The process dealloceer (vry) the memory.
However, due to a fout, the kernel vergeet om die kaarting from the page tables, even though it marks the corresponding physical memory as free.
The kernel can then heralloceer this "vrygestel" fisiese geheue for other purposes, like kernel data.
Since the mapping wasn’t removed, the process can still lees en skryf to this physical memory.
This means the process can access bladsye van kernel geheue, which could contain sensitive data or structures, potentially allowing an attacker to manipuleer kernel geheue.
Eksploitasiestategie: Heap Spray
Since the attacker can’t control which specific kernel pages will be allocated to freed memory, they use a technique called heap spray:
The attacker skep 'n groot aantal IOSurface-objekte in kernel geheue.
Each IOSurface object contains a magiese waarde in one of its fields, making it easy to identify.
They skandeer die vrygestelde bladsye to see if any of these IOSurface objects landed on a freed page.
When they find an IOSurface object on a freed page, they can use it to lees en skryf kernel geheue.
More info about this in https://github.com/felix-pb/kfd/tree/main/writeups
Stap-vir-Stap Heap Spray Proses
Spray IOSurface-objekte: The attacker creates many IOSurface objects with a special identifier ("magiese waarde").
Skandeer Vrygestelde Bladsye: They check if any of the objects have been allocated on a freed page.
Lees/Skryf Kernel Geheue: By manipulating fields in the IOSurface object, they gain the ability to perform arbitraire lees en skrywe in kernel geheue. This lets them:
Use one field to lees enige 32-bit waarde in kernel geheue.
Use another field to skryf 64-bit waardes, achieving a stable kernel lees/skryf primitief.
Generate IOSurface objects with the magic value IOSURFACE_MAGIC to later search for:
Soek na IOSurface
-objekte in een vrygemaakte fisiese bladsy:
Bereik Kernel Lees/Skryf met IOSurface
Na die verkryging van beheer oor 'n IOSurface objek in kernel geheue (gemap na 'n vrygestelde fisiese bladsy wat vanaf gebruikersruimte toeganklik is), kan ons dit gebruik vir arbitraire kernel lees en skryf operasies.
Belangrike Velde in IOSurface
Die IOSurface objek het twee belangrike velde:
Gebruik Tel Punter: Laat 'n 32-bis lees toe.
Geverifieerde Tydstempel Punter: Laat 'n 64-bis skryf toe.
Deur hierdie punters te oorskryf, herlei ons hulle na arbitraire adresse in kernel geheue, wat lees/skryf vermoëns moontlik maak.
32-Bit Kernel Lees
Om 'n lees uit te voer:
Oorskryf die gebruik tel punter om na die teikenadres minus 'n 0x14-byt offset te wys.
Gebruik die
get_use_count
metode om die waarde by daardie adres te lees.
64-Bit Kernel Skryf
Om 'n skryf te doen:
Oorskryf die geïndekseerde tydstempel-aanwyser na die teikenadres.
Gebruik die
set_indexed_timestamp
metode om 'n 64-bit waarde te skryf.
Exploit Flow Recap
Trigger Physical Use-After-Free: Vrye bladsye is beskikbaar vir hergebruik.
Spray IOSurface Objects: Allokeer baie IOSurface-objekte met 'n unieke "magic value" in die kerngeheue.
Identify Accessible IOSurface: Vind 'n IOSurface op 'n vrygemaakte bladsy wat jy beheer.
Abuse Use-After-Free: Wysig wysers in die IOSurface-objek om arbitrêre kernel read/write via IOSurface-metodes moontlik te maak.
With these primitives, the exploit provides controlled 32-bit reads and 64-bit writes to kernel memory. Further jailbreak steps could involve more stable read/write primitives, which may require bypassing additional protections (e.g., PPL on newer arm64e devices).
Last updated