Rust Basics

Generic Types

创建一个结构体,其中一个值可以是任何类型

struct Wrapper<T> {
value: T,
}

impl<T> Wrapper<T> {
pub fn new(value: T) -> Self {
Wrapper { value }
}
}

Wrapper::new(42).value
Wrapper::new("Foo").value, "Foo"

Option, Some & None

Option 类型意味着值可能是 Some 类型(有某种东西)或 None:

pub enum Option<T> {
None,
Some(T),
}

您可以使用 is_some()is_none() 等函数来检查 Option 的值。

宏比函数更强大,因为它们扩展以生成比您手动编写的代码更多的代码。例如,函数签名必须声明函数的参数数量和类型。另一方面,宏可以接受可变数量的参数:我们可以用一个参数调用 println!("hello"),或用两个参数调用 println!("hello {}", name)。此外,宏在编译器解释代码含义之前被扩展,因此宏可以例如在给定类型上实现一个 trait。函数则不能,因为它在运行时被调用,而 trait 需要在编译时实现。

macro_rules! my_macro {
() => {
println!("Check out my macro!");
};
($val:expr) => {
println!("Look at this other macro: {}", $val);
}
}
fn main() {
my_macro!();
my_macro!(7777);
}

// Export a macro from a module
mod macros {
#[macro_export]
macro_rules! my_macro {
() => {
println!("Check out my macro!");
};
}
}

迭代

// Iterate through a vector
let my_fav_fruits = vec!["banana", "raspberry"];
let mut my_iterable_fav_fruits = my_fav_fruits.iter();
assert_eq!(my_iterable_fav_fruits.next(), Some(&"banana"));
assert_eq!(my_iterable_fav_fruits.next(), Some(&"raspberry"));
assert_eq!(my_iterable_fav_fruits.next(), None); // When it's over, it's none

// One line iteration with action
my_fav_fruits.iter().map(|x| capitalize_first(x)).collect()

// Hashmap iteration
for (key, hashvalue) in &*map {
for key in map.keys() {
for value in map.values() {

递归盒子

enum List {
Cons(i32, List),
Nil,
}

let list = Cons(1, Cons(2, Cons(3, Nil)));

条件语句

if

let n = 5;
if n < 0 {
print!("{} is negative", n);
} else if n > 0 {
print!("{} is positive", n);
} else {
print!("{} is zero", n);
}

匹配

match number {
// Match a single value
1 => println!("One!"),
// Match several values
2 | 3 | 5 | 7 | 11 => println!("This is a prime"),
// TODO ^ Try adding 13 to the list of prime values
// Match an inclusive range
13..=19 => println!("A teen"),
// Handle the rest of cases
_ => println!("Ain't special"),
}

let boolean = true;
// Match is an expression too
let binary = match boolean {
// The arms of a match must cover all the possible values
false => 0,
true => 1,
// TODO ^ Try commenting out one of these arms
};

循环(无限)

loop {
count += 1;
if count == 3 {
println!("three");
continue;
}
println!("{}", count);
if count == 5 {
println!("OK, that's enough");
break;
}
}

当条件为真时

let mut n = 1;
while n < 101 {
if n % 15 == 0 {
println!("fizzbuzz");
} else if n % 5 == 0 {
println!("buzz");
} else {
println!("{}", n);
}
n += 1;
}

for n in 1..101 {
if n % 15 == 0 {
println!("fizzbuzz");
} else {
println!("{}", n);
}
}

// Use "..=" to make inclusive both ends
for n in 1..=100 {
if n % 15 == 0 {
println!("fizzbuzz");
} else if n % 3 == 0 {
println!("fizz");
} else if n % 5 == 0 {
println!("buzz");
} else {
println!("{}", n);
}
}

// ITERATIONS

let names = vec!["Bob", "Frank", "Ferris"];
//iter - Doesn't consume the collection
for name in names.iter() {
match name {
&"Ferris" => println!("There is a rustacean among us!"),
_ => println!("Hello {}", name),
}
}
//into_iter - COnsumes the collection
for name in names.into_iter() {
match name {
"Ferris" => println!("There is a rustacean among us!"),
_ => println!("Hello {}", name),
}
}
//iter_mut - This mutably borrows each element of the collection
for name in names.iter_mut() {
*name = match name {
&mut "Ferris" => "There is a rustacean among us!",
_ => "Hello",
}
}

如果让

let optional_word = Some(String::from("rustlings"));
if let word = optional_word {
println!("The word is: {}", word);
} else {
println!("The optional word doesn't contain anything");
}

while let

let mut optional = Some(0);
// This reads: "while `let` destructures `optional` into
// `Some(i)`, evaluate the block (`{}`). Else `break`.
while let Some(i) = optional {
if i > 9 {
println!("Greater than 9, quit!");
optional = None;
} else {
println!("`i` is `{:?}`. Try again.", i);
optional = Some(i + 1);
}
// ^ Less rightward drift and doesn't require
// explicitly handling the failing case.
}

Traits

为一个类型创建一个新方法

trait AppendBar {
fn append_bar(self) -> Self;
}

impl AppendBar for String {
fn append_bar(self) -> Self{
format!("{}Bar", self)
}
}

let s = String::from("Foo");
let s = s.append_bar();
println!("s: {}", s);

测试

#[cfg(test)]
mod tests {
#[test]
fn you_can_assert() {
assert!(true);
assert_eq!(true, true);
assert_ne!(true, false);
}
}

Threading

Arc

Arc可以使用Clone来创建更多对对象的引用,以将它们传递给线程。当指向一个值的最后一个引用指针超出作用域时,该变量会被丢弃。

use std::sync::Arc;
let apple = Arc::new("the same apple");
for _ in 0..10 {
let apple = Arc::clone(&apple);
thread::spawn(move || {
println!("{:?}", apple);
});
}

Threads

在这种情况下,我们将传递一个变量给线程,它将能够修改该变量。

fn main() {
let status = Arc::new(Mutex::new(JobStatus { jobs_completed: 0 }));
let status_shared = Arc::clone(&status);
thread::spawn(move || {
for _ in 0..10 {
thread::sleep(Duration::from_millis(250));
let mut status = status_shared.lock().unwrap();
status.jobs_completed += 1;
}
});
while status.lock().unwrap().jobs_completed < 10 {
println!("waiting... ");
thread::sleep(Duration::from_millis(500));
}
}

Last updated