Angr

Unterstützen Sie HackTricks

Ein Teil dieses Cheatsheets basiert auf der angr-Dokumentation.

Installation

sudo apt-get install python3-dev libffi-dev build-essential
python3 -m pip install --user virtualenv
python3 -m venv ang
source ang/bin/activate
pip install angr

Grundlegende Aktionen

import angr
import monkeyhex # this will format numerical results in hexadecimal
#Load binary
proj = angr.Project('/bin/true')

#BASIC BINARY DATA
proj.arch #Get arch "<Arch AMD64 (LE)>"
proj.arch.name #'AMD64'
proj.arch.memory_endness #'Iend_LE'
proj.entry #Get entrypoint "0x4023c0"
proj.filename #Get filename "/bin/true"

#There are specific options to load binaries
#Usually you won't need to use them but you could
angr.Project('examples/fauxware/fauxware', main_opts={'backend': 'blob', 'arch': 'i386'}, lib_opts={'libc.so.6': {'backend': 'elf'}})

Geladene und Hauptobjektinformationen

Geladene Daten

#LOADED DATA
proj.loader #<Loaded true, maps [0x400000:0x5004000]>
proj.loader.min_addr #0x400000
proj.loader.max_addr #0x5004000
proj.loader.all_objects #All loaded
proj.loader.shared_objects #Loaded binaries
"""
OrderedDict([('true', <ELF Object true, maps [0x400000:0x40a377]>),
('libc.so.6',
<ELF Object libc-2.31.so, maps [0x500000:0x6c4507]>),
('ld-linux-x86-64.so.2',
<ELF Object ld-2.31.so, maps [0x700000:0x72c177]>),
('extern-address space',
<ExternObject Object cle##externs, maps [0x800000:0x87ffff]>),
('cle##tls',
<ELFTLSObjectV2 Object cle##tls, maps [0x900000:0x91500f]>)])
"""
proj.loader.all_elf_objects #Get all ELF objects loaded (Linux)
proj.loader.all_pe_objects #Get all binaries loaded (Windows)
proj.loader.find_object_containing(0x400000)#Get object loaded in an address "<ELF Object fauxware, maps [0x400000:0x60105f]>"

Hauptobjekt

#Main Object (main binary loaded)
obj = proj.loader.main_object #<ELF Object true, maps [0x400000:0x60721f]>
obj.execstack #"False" Check for executable stack
obj.pic #"True" Check PIC
obj.imports #Get imports
obj.segments #<Regions: [<ELFSegment flags=0x5, relro=0x0, vaddr=0x400000, memsize=0xa74, filesize=0xa74, offset=0x0>, <ELFSegment flags=0x4, relro=0x1, vaddr=0x600e28, memsize=0x1d8, filesize=0x1d8, offset=0xe28>, <ELFSegment flags=0x6, relro=0x0, vaddr=0x601000, memsize=0x60, filesize=0x50, offset=0x1000>]>
obj.find_segment_containing(obj.entry) #Get segment by address
obj.sections #<Regions: [<Unnamed | offset 0x0, vaddr 0x0, size 0x0>, <.interp | offset 0x238, vaddr 0x400238, size 0x1c>, <.note.ABI-tag | offset 0x254, vaddr 0x400254, size 0x20>, <.note.gnu.build-id ...
obj.find_section_containing(obj.entry) #Get section by address
obj.plt['strcmp'] #Get plt address of a funcion (0x400550)
obj.reverse_plt[0x400550] #Get function from plt address ('strcmp')

Symbole und Relokationen

strcmp = proj.loader.find_symbol('strcmp') #<Symbol "strcmp" in libc.so.6 at 0x1089cd0>

strcmp.name #'strcmp'
strcmp.owne #<ELF Object libc-2.23.so, maps [0x1000000:0x13c999f]>
strcmp.rebased_addr #0x1089cd0
strcmp.linked_addr #0x89cd0
strcmp.relative_addr #0x89cd0
strcmp.is_export #True, as 'strcmp' is a function exported by libc

#Get strcmp from the main object
main_strcmp = proj.loader.main_object.get_symbol('strcmp')
main_strcmp.is_export #False
main_strcmp.is_import #True
main_strcmp.resolvedby #<Symbol "strcmp" in libc.so.6 at 0x1089cd0>

Blöcke

#Blocks
block = proj.factory.block(proj.entry) #Get the block of the entrypoint fo the binary
block.pp() #Print disassembly of the block
block.instructions #"0xb" Get number of instructions
block.instruction_addrs #Get instructions addresses "[0x401670, 0x401672, 0x401675, 0x401676, 0x401679, 0x40167d, 0x40167e, 0x40167f, 0x401686, 0x40168d, 0x401694]"

Dynamische Analyse

Simulationsmanager, Zustände

#Live States
#This is useful to modify content in a live analysis
state = proj.factory.entry_state()
state.regs.rip #Get the RIP
state.mem[proj.entry].int.resolved #Resolve as a C int (BV)
state.mem[proj.entry].int.concreteved #Resolve as python int
state.regs.rsi = state.solver.BVV(3, 64) #Modify RIP
state.mem[0x1000].long = 4 #Modify mem

#Other States
project.factory.entry_state()
project.factory.blank_state() #Most of its data left uninitialized
project.factory.full_init_statetate() #Execute through any initializers that need to be run before the main binary's entry point
project.factory.call_state() #Ready to execute a given function.

#Simulation manager
#The simulation manager stores all the states across the execution of the binary
simgr = proj.factory.simulation_manager(state) #Start
simgr.step() #Execute one step
simgr.active[0].regs.rip #Get RIP from the last state

Funktionen aufrufen

  • Sie können eine Liste von Argumenten über args und ein Wörterbuch von Umgebungsvariablen über env in entry_state und full_init_state übergeben. Die Werte in diesen Strukturen können Strings oder Bitvektoren sein und werden als Argumente und Umgebung in den Zustand der simulierten Ausführung serialisiert. Der Standardwert für args ist eine leere Liste, also sollten Sie immer argv[0] bereitstellen, wenn das Programm, das Sie analysieren, erwartet, es zu finden!

  • Wenn Sie möchten, dass argc symbolisch ist, können Sie einen symbolischen Bitvektor als argc an die Konstruktoren von entry_state und full_init_state übergeben. Seien Sie jedoch vorsichtig: Wenn Sie dies tun, sollten Sie auch eine Einschränkung zum resultierenden Zustand hinzufügen, dass Ihr Wert für argc nicht größer sein kann als die Anzahl der Argumente, die Sie in args übergeben haben.

  • Um den Aufrufzustand zu verwenden, sollten Sie ihn mit .call_state(addr, arg1, arg2, ...) aufrufen, wobei addr die Adresse der Funktion ist, die Sie aufrufen möchten, und argN das N-te Argument für diese Funktion ist, entweder als Python-Integer, String oder Array oder als Bitvektor. Wenn Sie Speicher zuweisen und tatsächlich einen Zeiger auf ein Objekt übergeben möchten, sollten Sie es in einen PointerWrapper einwickeln, d.h. angr.PointerWrapper("point to me!"). Die Ergebnisse dieser API können etwas unvorhersehbar sein, aber wir arbeiten daran.

Bitvektoren

#BitVectors
state = proj.factory.entry_state()
bv = state.solver.BVV(0x1234, 32) #Create BV of 32bits with the value "0x1234"
state.solver.eval(bv) #Convert BV to python int
bv.zero_extend(30) #Will add 30 zeros on the left of the bitvector
bv.sign_extend(30) #Will add 30 zeros or ones on the left of the BV extending the sign

Symbolische Bitvektoren & Einschränkungen

x = state.solver.BVS("x", 64) #Symbolic variable BV of length 64
y = state.solver.BVS("y", 64)

#Symbolic oprations
tree = (x + 1) / (y + 2)
tree #<BV64 (x_9_64 + 0x1) / (y_10_64 + 0x2)>
tree.op #'__floordiv__' Access last operation
tree.args #(<BV64 x_9_64 + 0x1>, <BV64 y_10_64 + 0x2>)
tree.args[0].op #'__add__' Access of dirst arg
tree.args[0].args #(<BV64 x_9_64>, <BV64 0x1>)
tree.args[0].args[1].op #'BVV'
tree.args[0].args[1].args #(1, 64)

#Symbolic constraints solver
state = proj.factory.entry_state() #Get a fresh state without constraints
input = state.solver.BVS('input', 64)
operation = (((input + 4) * 3) >> 1) + input
output = 200
state.solver.add(operation == output)
state.solver.eval(input) #0x3333333333333381
state.solver.add(input < 2**32)
state.satisfiable() #False

#Solver solutions
solver.eval(expression) #one possible solution
solver.eval_one(expression) #solution to the given expression, or throw an error if more than one solution is possible.
solver.eval_upto(expression, n) #n solutions to the given expression, returning fewer than n if fewer than n are possible.
solver.eval_atleast(expression, n) #n solutions to the given expression, throwing an error if fewer than n are possible.
solver.eval_exact(expression, n) #n solutions to the given expression, throwing an error if fewer or more than are possible.
solver.min(expression) #minimum possible solution to the given expression.
solver.max(expression) #maximum possible solution to the given expression.

Hooking

>>> stub_func = angr.SIM_PROCEDURES['stubs']['ReturnUnconstrained'] # this is a CLASS
>>> proj.hook(0x10000, stub_func())  # hook with an instance of the class

>>> proj.is_hooked(0x10000)            # these functions should be pretty self-explanitory
True
>>> proj.hooked_by(0x10000)
<ReturnUnconstrained>
>>> proj.unhook(0x10000)

>>> @proj.hook(0x20000, length=5)
... def my_hook(state):
...     state.regs.rax = 1

>>> proj.is_hooked(0x20000)
True

Außerdem können Sie proj.hook_symbol(name, hook) verwenden, wobei der Name eines Symbols als erstes Argument angegeben wird, um die Adresse zu hooken, an der sich das Symbol befindet.

Beispiele

Unterstützen Sie HackTricks

Last updated