Linux Privilege Escalation
Last updated
Last updated
Aprenda e pratique Hacking na AWS: Treinamento HackTricks AWS Red Team Expert (ARTE) Aprenda e pratique Hacking no GCP: Treinamento HackTricks GCP Red Team Expert (GRTE)
Vamos começar adquirindo conhecimento sobre o SO em execução.
Se você tiver permissões de escrita em qualquer pasta dentro da variável PATH
, você pode ser capaz de sequestrar algumas bibliotecas ou binários:
Informações interessantes, senhas ou chaves de API nas variáveis de ambiente?
Verifique a versão do kernel e se existe algum exploit que possa ser usado para escalar privilégios
Pode encontrar uma boa lista de kernels vulneráveis e alguns exploits já compilados aqui: https://github.com/lucyoa/kernel-exploits e exploitdb sploits. Outros sites onde pode encontrar alguns exploits compilados: https://github.com/bwbwbwbw/linux-exploit-binaries, https://github.com/Kabot/Unix-Privilege-Escalation-Exploits-Pack
Para extrair todas as versões de kernel vulneráveis a partir desse site, pode fazer:
As ferramentas que podem ajudar a procurar por exploits de kernel são:
linux-exploit-suggester.sh linux-exploit-suggester2.pl linuxprivchecker.py (execute NO alvo, verifica apenas exploits para kernel 2.x)
Sempre pesquise a versão do kernel no Google, talvez sua versão do kernel esteja mencionada em algum exploit de kernel e assim você terá certeza de que esse exploit é válido.
Escalação de Privilégios no Linux - Kernel Linux <= 3.19.0-73.8
Com base nas versões vulneráveis do sudo que aparecem em:
Você pode verificar se a versão do sudo é vulnerável usando este comando grep.
De @sickrov
Verifique a caixa smasher2 do HTB para um exemplo de como essa vulnerabilidade poderia ser explorada
Execshield é uma técnica de proteção de memória que visa prevenir a execução de código em áreas de memória marcadas como somente leitura.
ASLR (Address Space Layout Randomization) é uma técnica de segurança que randomiza a posição de carga de processos no espaço de endereçamento da memória, dificultando prever endereços de memória específicos para explorar vulnerabilidades.
Se você estiver dentro de um contêiner do Docker, pode tentar escapar dele:
Docker SecurityVerifique o que está montado e desmontado, onde e por quê. Se algo estiver desmontado, você pode tentar montá-lo e verificar informações privadas.
Enumerar binários úteis
Também, verifique se qualquer compilador está instalado. Isso é útil se você precisar usar algum exploit de kernel, pois é recomendado compilá-lo na máquina onde você pretende usá-lo (ou em uma similar)
Verifique a versão dos pacotes e serviços instalados. Talvez haja alguma versão antiga do Nagios (por exemplo) que possa ser explorada para escalonamento de privilégios... É recomendado verificar manualmente a versão do software instalado mais suspeito.
Se você tem acesso SSH à máquina, também pode usar o openVAS para verificar se há software desatualizado e vulnerável instalado na máquina.
Obsere que esses comandos mostrarão muitas informações que serão em sua maioria inúteis, portanto é recomendado o uso de aplicativos como o OpenVAS ou similares que verificarão se alguma versão de software instalada é vulnerável a exploits conhecidos
Dê uma olhada em quais processos estão sendo executados e verifique se algum processo possui mais privilégios do que deveria (talvez um tomcat sendo executado por root?)
Sempre verifique se há depuradores electron/cef/chromium em execução, você pode abusar deles para escalar privilégios. O Linpeas detecta esses depuradores verificando o parâmetro --inspect
na linha de comando do processo.
Também verifique seus privilégios sobre os binários dos processos, talvez você consiga sobrescrever algo.
Você pode usar ferramentas como pspy para monitorar processos. Isso pode ser muito útil para identificar processos vulneráveis sendo executados com frequência ou quando um conjunto de requisitos é atendido.
Alguns serviços de um servidor salvam credenciais em texto claro na memória. Normalmente você precisará de privilégios de root para ler a memória de processos pertencentes a outros usuários, portanto isso geralmente é mais útil quando você já é root e deseja descobrir mais credenciais. No entanto, lembre-se de que como usuário regular você pode ler a memória dos processos que você possui.
Observe que hoje em dia a maioria das máquinas não permite ptrace por padrão, o que significa que você não pode despejar outros processos que pertencem ao seu usuário não privilegiado.
O arquivo /proc/sys/kernel/yama/ptrace_scope controla a acessibilidade do ptrace:
kernel.yama.ptrace_scope = 0: todos os processos podem ser depurados, desde que tenham o mesmo uid. Esta é a forma clássica de como o ptrace funcionava.
kernel.yama.ptrace_scope = 1: apenas um processo pai pode ser depurado.
kernel.yama.ptrace_scope = 2: Apenas o administrador pode usar o ptrace, pois requer a capacidade CAP_SYS_PTRACE.
kernel.yama.ptrace_scope = 3: Nenhum processo pode ser rastreado com ptrace. Uma reinicialização é necessária para habilitar o rastreamento novamente.
Se você tiver acesso à memória de um serviço FTP (por exemplo), você poderia obter o Heap e procurar por suas credenciais.
Para um determinado ID de processo, o arquivo maps mostra como a memória está mapeada dentro do espaço de endereço virtual desse processo; ele também mostra as permissões de cada região mapeada. O arquivo pseudo mem expõe a própria memória dos processos. A partir do arquivo maps, sabemos quais regiões de memória são legíveis e seus deslocamentos. Usamos essas informações para procurar no arquivo mem e despejar todas as regiões legíveis em um arquivo.
/dev/mem
fornece acesso à memória física do sistema, não à memória virtual. O espaço de endereço virtual do kernel pode ser acessado usando /dev/kmem.
Normalmente, /dev/mem
só é legível pelo usuário root e pelo grupo kmem.
ProcDump é uma reimaginação para Linux da clássica ferramenta ProcDump da suíte de ferramentas Sysinternals para Windows. Obtenha em https://github.com/Sysinternals/ProcDump-for-Linux
Para fazer dump da memória de um processo, você pode usar:
https://github.com/hajzer/bash-memory-dump (root) - _Você pode remover manualmente os requisitos de root e fazer dump do processo de propriedade sua
Script A.5 de https://www.delaat.net/rp/2016-2017/p97/report.pdf (root é necessário)
Se você descobrir que o processo do autenticador está em execução:
Você pode despejar o processo (consulte as seções anteriores para encontrar diferentes maneiras de despejar a memória de um processo) e procurar por credenciais dentro da memória:
A ferramenta https://github.com/huntergregal/mimipenguin irá roubar credenciais em texto claro da memória e de alguns arquivos conhecidos. Requer privilégios de root para funcionar corretamente.
Recurso | Nome do Processo |
---|---|
Senha do GDM (Kali Desktop, Debian Desktop) | gdm-password |
Gnome Keyring (Ubuntu Desktop, ArchLinux Desktop) | gnome-keyring-daemon |
LightDM (Ubuntu Desktop) | lightdm |
VSFTPd (Conexões FTP Ativas) | vsftpd |
Apache2 (Sessões de Autenticação Básica HTTP Ativas) | apache2 |
OpenSSH (Sessões SSH Ativas - Uso de Sudo) | sshd: |
Verifique se alguma tarefa agendada está vulnerável. Talvez você possa aproveitar um script sendo executado pelo root (vulnerabilidade de curinga? pode modificar arquivos que o root usa? usar links simbólicos? criar arquivos específicos no diretório que o root usa?).
Por exemplo, dentro do /etc/crontab você pode encontrar o PATH: PATH=/home/user:/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
(Observe como o usuário "user" tem privilégios de escrita sobre /home/user)
Se dentro deste crontab o usuário root tentar executar algum comando ou script sem definir o caminho. Por exemplo: * * * * root overwrite.sh Então, você pode obter um shell root usando:
Se um script é executado pelo root e possui um "*" dentro de um comando, você pode explorar isso para fazer coisas inesperadas (como escalonamento de privilégios). Exemplo:
Se o caractere curinga é precedido de um caminho como /algum/caminho/* , não é vulnerável (mesmo ./* não é).
Leia a seguinte página para mais truques de exploração de caracteres curinga:
Wildcards Spare tricksSe você puder modificar um script cron executado pelo root, você pode obter um shell muito facilmente:
Se o script executado pelo root usar um diretório onde você tem acesso total, talvez seja útil excluir essa pasta e criar um link simbólico para outra servindo um script controlado por você.
Você pode monitorar os processos para procurar processos que estão sendo executados a cada 1, 2 ou 5 minutos. Talvez você possa se aproveitar disso e escalar privilégios.
Por exemplo, para monitorar a cada 0,1s durante 1 minuto, ordenar por comandos menos executados e excluir os comandos que foram mais executados, você pode fazer:
Você também pode usar pspy (isso irá monitorar e listar todos os processos que são iniciados).
É possível criar um trabalho cron colocando um retorno de carro após um comentário (sem caractere de nova linha), e o trabalho cron irá funcionar. Exemplo (observe o caractere de retorno de carro):
Verifique se você pode escrever em algum arquivo .service
, se puder, você poderá modificá-lo para que ele execute sua backdoor quando o serviço for iniciado, reiniciado ou parado (talvez seja necessário aguardar até que a máquina seja reiniciada).
Por exemplo, crie sua backdoor dentro do arquivo .service com ExecStart=/tmp/script.sh
Lembre-se de que se você tiver permissões de escrita sobre binários executados por serviços, você pode alterá-los para backdoors, para que quando os serviços forem reexecutados, as backdoors também sejam executadas.
Você pode ver o PATH usado pelo systemd com:
Se você descobrir que pode escrever em qualquer uma das pastas do caminho, talvez consiga aumentar os privilégios. Você precisa procurar por caminhos relativos sendo usados em arquivos de configuração de serviços como:
Em seguida, crie um executável com o mesmo nome que o caminho relativo do binário dentro da pasta PATH do systemd em que você pode escrever e, quando o serviço for solicitado a executar a ação vulnerável (Start, Stop, Reload), sua backdoor será executada (usuários não privilegiados geralmente não podem iniciar/parar serviços, mas verifique se você pode usar sudo -l
).
Saiba mais sobre serviços com man systemd.service
.
Temporizadores são arquivos de unidade systemd cujo nome termina em **.timer**
que controlam arquivos ou eventos **.service**
. Temporizadores podem ser usados como uma alternativa ao cron, pois possuem suporte integrado para eventos de tempo de calendário e eventos de tempo monotônico e podem ser executados de forma assíncrona.
Você pode enumerar todos os temporizadores com:
Se você pode modificar um timer, você pode fazer com que ele execute alguns existentes de systemd.unit (como um .service
ou um .target
)
Na documentação, você pode ler o que é a Unidade:
A unidade a ser ativada quando este temporizador expirar. O argumento é um nome de unidade, cujo sufixo não é ".timer". Se não for especificado, esse valor padrão é um serviço que tem o mesmo nome que a unidade do temporizador, exceto pelo sufixo. (Veja acima.) É recomendável que o nome da unidade ativada e o nome da unidade do temporizador sejam nomeados de forma idêntica, exceto pelo sufixo.
Portanto, para abusar dessa permissão, você precisaria:
Encontrar alguma unidade do systemd (como um .service
) que esteja executando um binário gravável
Encontrar alguma unidade do systemd que esteja executando um caminho relativo e que você tenha privilégios de gravação sobre o PATH do systemd (para se passar por esse executável)
Saiba mais sobre temporizadores com man systemd.timer
.
Para ativar um temporizador, você precisa de privilégios de root e executar:
Observe que o temporizador é ativado criando um link simbólico para ele em /etc/systemd/system/<WantedBy_section>.wants/<name>.timer
Os Sockets de Domínio Unix (UDS) permitem a comunicação entre processos nos mesmos ou em diferentes computadores dentro de modelos cliente-servidor. Eles utilizam arquivos de descritores Unix padrão para comunicação entre computadores e são configurados por meio de arquivos .socket
.
Os Sockets podem ser configurados usando arquivos .socket
.
Saiba mais sobre sockets com man systemd.socket
. Dentro deste arquivo, vários parâmetros interessantes podem ser configurados:
ListenStream
, ListenDatagram
, ListenSequentialPacket
, ListenFIFO
, ListenSpecial
, ListenNetlink
, ListenMessageQueue
, ListenUSBFunction
: Essas opções são diferentes, mas um resumo é usado para indicar onde ele vai escutar o socket (o caminho do arquivo de socket AF_UNIX, o número de porta IPv4/6 para escutar, etc.)
Accept
: Aceita um argumento booleano. Se for verdadeiro, uma instância de serviço é iniciada para cada conexão recebida e apenas o socket de conexão é passado para ela. Se for falso, todos os sockets de escuta em si são passados para a unidade de serviço iniciada, e apenas uma unidade de serviço é iniciada para todas as conexões. Esse valor é ignorado para sockets de datagrama e FIFOs, onde uma única unidade de serviço lida incondicionalmente com todo o tráfego de entrada. O padrão é falso. Por motivos de desempenho, é recomendado escrever novos daemons apenas de uma maneira adequada para Accept=no
.
ExecStartPre
, ExecStartPost
: Aceita uma ou mais linhas de comando, que são executadas antes ou depois dos sockets/FIFOs de escuta serem criados e vinculados, respectivamente. O primeiro token da linha de comando deve ser um nome de arquivo absoluto, seguido por argumentos para o processo.
ExecStopPre
, ExecStopPost
: Comandos adicionais que são executados antes ou depois dos sockets/FIFOs de escuta serem fechados e removidos, respectivamente.
Service
: Especifica o nome da unidade de serviço a ser ativada no tráfego de entrada. Essa configuração só é permitida para sockets com Accept=no. O padrão é o serviço que tem o mesmo nome que o socket (com o sufixo substituído). Na maioria dos casos, não deve ser necessário usar essa opção.
Se você encontrar um arquivo .socket
gravável, você pode adicionar no início da seção [Socket]
algo como: ExecStartPre=/home/kali/sys/backdoor
e a porta dos fundos será executada antes que o socket seja criado. Portanto, você provavelmente precisará esperar até que a máquina seja reiniciada.
Obs: o sistema deve estar usando essa configuração de arquivo de socket, caso contrário, a porta dos fundos não será executada
Se você identificar algum socket gravável (agora estamos falando sobre Sockets Unix e não sobre os arquivos de configuração .socket
), então você pode se comunicar com esse socket e talvez explorar uma vulnerabilidade.
Exemplo de exploração:
Socket Command InjectionObserve que pode haver alguns sockets ouvindo por requisições HTTP (Não estou falando sobre arquivos .socket, mas sim sobre arquivos que atuam como sockets Unix). Você pode verificar isso com:
Se o socket responder com uma solicitação HTTP, então você pode comunicar-se com ele e talvez explorar alguma vulnerabilidade.
O socket do Docker, frequentemente encontrado em /var/run/docker.sock
, é um arquivo crítico que deve ser protegido. Por padrão, ele é gravável pelo usuário root
e membros do grupo docker
. Possuir acesso de escrita a este socket pode levar à escalada de privilégios. Aqui está uma explicação de como isso pode ser feito e métodos alternativos se o CLI do Docker não estiver disponível.
Se você tiver acesso de escrita ao socket do Docker, você pode escalar privilégios usando os seguintes comandos:
Estes comandos permitem que você execute um contêiner com acesso de nível raiz ao sistema de arquivos do host.
Nos casos em que o Docker CLI não está disponível, o socket do Docker ainda pode ser manipulado usando a API do Docker e comandos curl
.
Listar Imagens do Docker: Obtenha a lista de imagens disponíveis.
Criar um Contêiner: Envie uma solicitação para criar um contêiner que monta o diretório raiz do sistema host.
Inicie o contêiner recém-criado:
Anexar ao Contêiner: Use socat
para estabelecer uma conexão com o contêiner, permitindo a execução de comandos dentro dele.
Após configurar a conexão socat
, você pode executar comandos diretamente no contêiner com acesso de nível raiz ao sistema de arquivos do host.
Observe que se você tiver permissões de gravação sobre o socket do docker porque está dentro do grupo docker
você tem mais maneiras de elevar privilégios. Se a API do docker estiver ouvindo em uma porta você também pode ser capaz de comprometê-la.
Confira mais maneiras de escapar do docker ou abusar dele para elevar privilégios em:
Docker SecuritySe você descobrir que pode usar o comando ctr
, leia a seguinte página, pois você pode ser capaz de abusar dele para elevar privilégios:
Se você descobrir que pode usar o comando runc
, leia a seguinte página, pois você pode ser capaz de abusar dele para elevar privilégios:
D-Bus é um sofisticado sistema de Comunicação entre Processos (IPC) que permite que aplicativos interajam e compartilhem dados de forma eficiente. Projetado com o sistema Linux moderno em mente, ele oferece um framework robusto para diferentes formas de comunicação de aplicativos.
O sistema é versátil, suportando IPC básico que aprimora a troca de dados entre processos, lembrando sockets de domínio UNIX aprimorados. Além disso, ele auxilia na transmissão de eventos ou sinais, promovendo a integração perfeita entre os componentes do sistema. Por exemplo, um sinal de um daemon Bluetooth sobre uma chamada recebida pode fazer com que um player de música seja silenciado, aprimorando a experiência do usuário. Além disso, o D-Bus suporta um sistema de objetos remotos, simplificando solicitações de serviço e invocações de métodos entre aplicativos, simplificando processos que tradicionalmente eram complexos.
O D-Bus opera em um modelo de permitir/negar, gerenciando permissões de mensagem (chamadas de método, emissões de sinal, etc.) com base no efeito cumulativo das regras de política correspondentes. Essas políticas especificam interações com o barramento, potencialmente permitindo a escalada de privilégios por meio da exploração dessas permissões.
Um exemplo de tal política em /etc/dbus-1/system.d/wpa_supplicant.conf
é fornecido, detalhando permissões para o usuário root possuir, enviar e receber mensagens de fi.w1.wpa_supplicant1
.
Políticas sem um usuário ou grupo especificado se aplicam universalmente, enquanto políticas de contexto "padrão" se aplicam a todos que não são abrangidos por outras políticas específicas.
Aprenda como enumerar e explorar uma comunicação D-Bus aqui:
D-Bus Enumeration & Command Injection Privilege EscalationÉ sempre interessante enumerar a rede e descobrir a posição da máquina.
Sempre verifique os serviços de rede em execução na máquina com os quais você não conseguiu interagir antes de acessá-la:
Verifique se você consegue farejar o tráfego. Se conseguir, você poderá ser capaz de obter algumas credenciais.
Verifique quem você é, quais privilégios você possui, quais utilizadores estão nos sistemas, quais podem fazer login e quais têm privilégios de root:
Algumas versões do Linux foram afetadas por um bug que permite que usuários com UID > INT_MAX escalarem privilégios. Mais informações: aqui, aqui e aqui.
Explorá-lo usando: systemd-run -t /bin/bash
Verifique se você é um membro de algum grupo que poderia conceder a você privilégios de root:
Interesting Groups - Linux PrivescVerifique se há algo interessante localizado dentro da área de transferência (se possível)
Se você conhece alguma senha do ambiente, tente fazer login como cada usuário usando a senha.
Se não se importar em fazer muito barulho e os binários su
e timeout
estiverem presentes no computador, você pode tentar forçar a entrada de usuário usando su-bruteforce.
O Linpeas com o parâmetro -a
também tenta forçar a entrada de usuários.
Se você descobrir que pode escrever dentro de alguma pasta do $PATH, pode ser capaz de elevar privilégios criando uma porta dos fundos dentro da pasta gravável com o nome de algum comando que será executado por um usuário diferente (idealmente root) e que não é carregado de uma pasta localizada anteriormente à sua pasta gravável no $PATH.
Você pode ter permissão para executar algum comando usando sudo ou eles podem ter o bit suid. Verifique usando:
Algumas comandos inesperados permitem que você leia e/ou escreva arquivos ou até mesmo execute um comando. Por exemplo:
A configuração do Sudo pode permitir que um usuário execute algum comando com os privilégios de outro usuário sem precisar saber a senha.
Neste exemplo, o usuário demo
pode executar o vim
como root
, agora é trivial obter um shell adicionando uma chave ssh no diretório root ou chamando sh
.
Esta diretiva permite ao usuário definir uma variável de ambiente enquanto executa algo:
Este exemplo, baseado na máquina HTB Admirer, estava vulnerável ao PYTHONPATH hijacking para carregar uma biblioteca Python arbitrária ao executar o script como root:
Pule para ler outros arquivos ou use links simbólicos. Por exemplo, no arquivo sudoers: hacker10 ALL= (root) /bin/less /var/log/*
Se um curinga é usado (*), é ainda mais fácil:
Contramedidas: https://blog.compass-security.com/2012/10/dangerous-sudoers-entries-part-5-recapitulation/
Se a permissão sudo for concedida a um único comando sem especificar o caminho: hacker10 ALL= (root) less, você pode explorá-lo alterando a variável PATH.
Esta técnica também pode ser usada se um binário suid executar outro comando sem especificar o caminho para ele (sempre verifique com strings o conteúdo de um binário SUID estranho).
Exemplos de carga útil para executar.
Se o binário suid executar outro comando especificando o caminho, então, você pode tentar exportar uma função com o nome do comando que o arquivo suid está chamando.
Por exemplo, se um binário suid chama /usr/sbin/service apache2 start você tem que tentar criar a função e exportá-la:
A variável de ambiente LD_PRELOAD é usada para especificar uma ou mais bibliotecas compartilhadas (.so files) a serem carregadas pelo carregador antes de todas as outras, incluindo a biblioteca C padrão (libc.so
). Esse processo é conhecido como pré-carregamento de uma biblioteca.
No entanto, para manter a segurança do sistema e evitar que esse recurso seja explorado, especialmente com executáveis suid/sgid, o sistema impõe certas condições:
O carregador ignora o LD_PRELOAD para executáveis em que o ID de usuário real (ruid) não corresponde ao ID de usuário efetivo (euid).
Para executáveis com suid/sgid, apenas bibliotecas em caminhos padrão que também são suid/sgid são pré-carregadas.
A escalada de privilégios pode ocorrer se você tiver a capacidade de executar comandos com sudo
e a saída de sudo -l
incluir a declaração env_keep+=LD_PRELOAD. Essa configuração permite que a variável de ambiente LD_PRELOAD persista e seja reconhecida mesmo quando os comandos são executados com sudo
, potencialmente levando à execução de código arbitrário com privilégios elevados.
Salve como /tmp/pe.c
Em seguida, compile-o usando:
Finalmente, eleve os privilégios executando
Uma privesc semelhante pode ser abusada se o atacante controlar a variável de ambiente LD_LIBRARY_PATH porque ele controla o caminho onde as bibliotecas serão pesquisadas.
Ao encontrar um binário com permissões SUID que pareça incomum, é uma boa prática verificar se ele está carregando arquivos .so corretamente. Isso pode ser verificado executando o seguinte comando:
Por exemplo, encontrar um erro como "open(“/caminho/para/.config/libcalc.so”, O_RDONLY) = -1 ENOENT (Arquivo ou diretório não encontrado)" sugere um potencial para exploração.
Para explorar isso, alguém procederia criando um arquivo C, digamos "/caminho/para/.config/libcalc.c", contendo o seguinte código:
Este código, uma vez compilado e executado, tem como objetivo elevar privilégios manipulando permissões de arquivo e executando um shell com privilégios elevados.
Compile o arquivo C acima em um arquivo de objeto compartilhado (.so) com:
Finalmente, executar o binário SUID afetado deve acionar o exploit, permitindo a comprometimento potencial do sistema.
Agora que encontramos um binário SUID carregando uma biblioteca de uma pasta onde podemos escrever, vamos criar a biblioteca nessa pasta com o nome necessário:
Se você receber um erro como
Isso significa que a biblioteca que você gerou precisa ter uma função chamada a_function_name
.
GTFOBins é uma lista selecionada de binários Unix que podem ser explorados por um atacante para contornar restrições de segurança locais. GTFOArgs é o mesmo, mas para casos em que você só pode injetar argumentos em um comando.
O projeto coleta funções legítimas de binários Unix que podem ser abusadas para escapar de shells restritos, elevar ou manter privilégios elevados, transferir arquivos, criar shells de ligação e reversos e facilitar outras tarefas pós-exploração.
gdb -nx -ex '!sh' -ex quit sudo mysql -e '! /bin/sh' strace -o /dev/null /bin/sh sudo awk 'BEGIN {system("/bin/sh")}'
Se você pode acessar sudo -l
, você pode usar a ferramenta FallOfSudo para verificar se ela encontra como explorar alguma regra do sudo.
Em casos em que você tem acesso ao sudo mas não a senha, você pode elevar privilégios aguardando a execução de um comando sudo e depois sequestrando o token da sessão.
Requisitos para elevar privilégios:
Você já tem um shell como usuário "sampleuser"
"sampleuser" usou sudo
para executar algo nos últimos 15 minutos (por padrão, essa é a duração do token do sudo que nos permite usar sudo
sem precisar de senha)
cat /proc/sys/kernel/yama/ptrace_scope
é 0
gdb
é acessível (você pode ser capaz de fazer upload dele)
(Você pode temporariamente habilitar ptrace_scope
com echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope
ou modificando permanentemente /etc/sysctl.d/10-ptrace.conf
e definindo kernel.yama.ptrace_scope = 0
)
Se todos esses requisitos forem atendidos, você pode elevar privilégios usando: https://github.com/nongiach/sudo_inject
O primeiro exploit (exploit.sh
) criará o binário activate_sudo_token
em /tmp. Você pode usá-lo para ativar o token do sudo em sua sessão (você não obterá automaticamente um shell root, faça sudo su
):
O segundo exploit (exploit_v2.sh
) irá criar um shell sh em /tmp propriedade do root com setuid
O terceiro exploit (exploit_v3.sh
) irá criar um arquivo sudoers que torna os tokens sudo eternos e permite que todos os usuários usem o sudo
Se você tiver permissões de escrita na pasta ou em qualquer um dos arquivos criados dentro da pasta, você pode usar o binário write_sudo_token para criar um token sudo para um usuário e PID. Por exemplo, se você puder sobrescrever o arquivo /var/run/sudo/ts/sampleuser e tiver um shell como esse usuário com PID 1234, você pode obter privilégios sudo sem precisar saber a senha fazendo:
O arquivo /etc/sudoers
e os arquivos dentro de /etc/sudoers.d
configuram quem pode usar sudo
e como. Esses arquivos por padrão só podem ser lidos pelo usuário root e pelo grupo root.
Se você pode ler este arquivo, você pode ser capaz de obter algumas informações interessantes, e se você pode escrever em qualquer arquivo, você será capaz de escalar privilégios.
Se você pode escrever, você pode abusar dessa permissão
Outra maneira de abusar dessas permissões:
Existem algumas alternativas para o binário sudo
, como o doas
para o OpenBSD, lembre-se de verificar sua configuração em /etc/doas.conf
Se você sabe que um usuário normalmente se conecta a uma máquina e usa sudo
para elevar privilégios e você obteve um shell dentro desse contexto de usuário, você pode criar um novo executável sudo que executará seu código como root e, em seguida, o comando do usuário. Em seguida, modifique o $PATH do contexto do usuário (por exemplo, adicionando o novo caminho no .bash_profile) para que, quando o usuário executar o sudo, seu executável sudo seja executado.
Observe que se o usuário estiver usando um shell diferente (não bash), você precisará modificar outros arquivos para adicionar o novo caminho. Por exemplo, o sudo-piggyback modifica ~/.bashrc
, ~/.zshrc
, ~/.bash_profile
. Você pode encontrar outro exemplo em bashdoor.py
Ou executando algo como:
O arquivo /etc/ld.so.conf
indica de onde os arquivos de configuração carregados são provenientes. Tipicamente, este arquivo contém o seguinte caminho: include /etc/ld.so.conf.d/*.conf
Isso significa que os arquivos de configuração de /etc/ld.so.conf.d/*.conf
serão lidos. Esses arquivos de configuração apontam para outras pastas onde as bibliotecas serão procuradas. Por exemplo, o conteúdo de /etc/ld.so.conf.d/libc.conf
é /usr/local/lib
. Isso significa que o sistema procurará bibliotecas dentro de /usr/local/lib
.
Se, por algum motivo, um usuário tiver permissões de escrita em algum dos caminhos indicados: /etc/ld.so.conf
, /etc/ld.so.conf.d/
, qualquer arquivo dentro de /etc/ld.so.conf.d/
ou qualquer pasta dentro do arquivo de configuração dentro de /etc/ld.so.conf.d/*.conf
, ele pode ser capaz de escalar privilégios.
Veja como explorar essa má configuração na página a seguir:
Ao copiar a biblioteca para /var/tmp/flag15/
, ela será usada pelo programa neste local conforme especificado na variável RPATH
.
Em seguida, crie uma biblioteca maliciosa em /var/tmp
com gcc -fPIC -shared -static-libgcc -Wl,--version-script=version,-Bstatic exploit.c -o libc.so.6
As capacidades do Linux fornecem um subconjunto dos privilégios de root disponíveis para um processo. Isso efetivamente divide os privilégios de root em unidades menores e distintas. Cada uma dessas unidades pode então ser concedida independentemente a processos. Dessa forma, o conjunto completo de privilégios é reduzido, diminuindo os riscos de exploração. Leia a seguinte página para saber mais sobre as capacidades e como abusar delas:
Linux CapabilitiesEm um diretório, o bit de "execução" implica que o usuário afetado pode fazer "cd" para a pasta. O bit de "leitura" implica que o usuário pode listar os arquivos, e o bit de "escrita" implica que o usuário pode excluir e criar novos arquivos.
Listas de Controle de Acesso (ACLs) representam a camada secundária de permissões discricionárias, capazes de sobrescrever as permissões tradicionais ugo/rwx. Essas permissões aprimoram o controle sobre o acesso a arquivos ou diretórios, permitindo ou negando direitos a usuários específicos que não são os proprietários ou parte do grupo. Esse nível de granularidade garante um gerenciamento de acesso mais preciso. Mais detalhes podem ser encontrados aqui.
Dê ao usuário "kali" permissões de leitura e escrita sobre um arquivo:
Obter arquivos com ACLs específicas do sistema:
Em versões antigas você pode sequestrar alguma sessão de shell de um usuário diferente (root). Nas versões mais recentes você poderá conectar-se apenas às sessões de tela do seu próprio usuário. No entanto, você pode encontrar informações interessantes dentro da sessão.
Listar sessões de tela
Anexar a uma sessão
Este era um problema com versões antigas do tmux. Não consegui sequestrar uma sessão tmux (v2.1) criada pelo root como um usuário não privilegiado.
Listar sessões tmux
Anexar a uma sessão
Verifique a caixa Valentine do HTB para um exemplo.
Todas as chaves SSL e SSH geradas em sistemas baseados em Debian (Ubuntu, Kubuntu, etc) entre setembro de 2006 e 13 de maio de 2008 podem ser afetadas por esse bug. Esse bug ocorre ao criar uma nova chave ssh nesses sistemas operacionais, pois apenas 32.768 variações eram possíveis. Isso significa que todas as possibilidades podem ser calculadas e tendo a chave pública ssh, você pode procurar pela chave privada correspondente. Você pode encontrar as possibilidades calculadas aqui: https://github.com/g0tmi1k/debian-ssh
PasswordAuthentication: Especifica se a autenticação por senha é permitida. O padrão é no
.
PubkeyAuthentication: Especifica se a autenticação por chave pública é permitida. O padrão é yes
.
PermitEmptyPasswords: Quando a autenticação por senha é permitida, especifica se o servidor permite o login em contas com strings de senha vazias. O padrão é no
.
Especifica se o root pode fazer login usando ssh, o padrão é no
. Valores possíveis:
yes
: root pode fazer login usando senha e chave privada
without-password
ou prohibit-password
: root só pode fazer login com uma chave privada
forced-commands-only
: Root só pode fazer login usando chave privada e se as opções de comandos forem especificadas
no
: não
Especifica os arquivos que contêm as chaves públicas que podem ser usadas para autenticação do usuário. Pode conter tokens como %h
, que serão substituídos pelo diretório home. Você pode indicar caminhos absolutos (começando em /
) ou caminhos relativos a partir do diretório home do usuário. Por exemplo:
Essa configuração indicará que se você tentar fazer login com a chave privada do usuário "testusername", o ssh irá comparar a chave pública da sua chave com as localizadas em /home/testusername/.ssh/authorized_keys
e /home/testusername/access
O encaminhamento do agente SSH permite que você use suas chaves SSH locais em vez de deixar chaves (sem frases-passe!) no seu servidor. Assim, você será capaz de pular via ssh para um host e a partir daí pular para outro host usando a chave localizada no seu host inicial.
Você precisa configurar essa opção em $HOME/.ssh.config
assim:
Observe que se Host
for *
, toda vez que o usuário pular para uma máquina diferente, essa máquina poderá acessar as chaves (o que é um problema de segurança).
O arquivo /etc/ssh_config
pode sobrescrever essas opções e permitir ou negar essa configuração.
O arquivo /etc/sshd_config
pode permitir ou negar o encaminhamento do ssh-agent com a palavra-chave AllowAgentForwarding
(o padrão é permitir).
Se você descobrir que o Encaminhamento de Agente está configurado em um ambiente, leia a seguinte página, pois você pode ser capaz de abusar disso para escalar privilégios:
SSH Forward Agent exploitationO arquivo /etc/profile
e os arquivos em /etc/profile.d/
são scripts que são executados quando um usuário inicia um novo shell. Portanto, se você puder escrever ou modificar qualquer um deles, poderá escalar privilégios.
Se algum script de perfil estranho for encontrado, você deve verificá-lo em busca de detalhes sensíveis.
Dependendo do sistema operacional, os arquivos /etc/passwd
e /etc/shadow
podem estar usando um nome diferente ou pode haver um backup. Portanto, é recomendado encontrar todos eles e verificar se você pode lê-los para ver se há hashes dentro dos arquivos:
Em algumas ocasiões, você pode encontrar hashes de senhas dentro do arquivo /etc/passwd
(ou equivalente)
Primeiro, gere uma senha com um dos seguintes comandos.
Em seguida, adicione o usuário hacker
e insira a senha gerada.
Por exemplo: hacker:$1$hacker$TzyKlv0/R/c28R.GAeLw.1:0:0:Hacker:/root:/bin/bash
Agora você pode usar o comando su
com hacker:hacker
Alternativamente, você pode usar as seguintes linhas para adicionar um usuário fictício sem senha. AVISO: você pode degradar a segurança atual da máquina.
NOTA: Nas plataformas BSD, /etc/passwd
está localizado em /etc/pwd.db
e /etc/master.passwd
, também o /etc/shadow
é renomeado para /etc/spwd.db
.
Você deve verificar se consegue escrever em alguns arquivos sensíveis. Por exemplo, consegue escrever em algum arquivo de configuração de serviço?
Por exemplo, se a máquina estiver executando um servidor tomcat e você puder modificar o arquivo de configuração do serviço Tomcat dentro de /etc/systemd/, então você pode modificar as linhas:
As seguintes pastas podem conter backups ou informações interessantes: /tmp, /var/tmp, /var/backups, /var/mail, /var/spool/mail, /etc/exports, /root (Provavelmente você não conseguirá ler a última, mas tente)
Leia o código do linPEAS, ele procura por vários arquivos possíveis que poderiam conter senhas. Outra ferramenta interessante que você pode usar para fazer isso é: LaZagne que é um aplicativo de código aberto usado para recuperar muitas senhas armazenadas em um computador local para Windows, Linux e Mac.
Se você puder ler logs, talvez consiga encontrar informações interessantes/confidenciais dentro deles. Quanto mais estranho o log, mais interessante ele será (provavelmente). Além disso, alguns logs de auditoria "ruins" configurados (com backdoor?) podem permitir que você grave senhas dentro dos logs de auditoria, conforme explicado neste post: https://www.redsiege.com/blog/2019/05/logging-passwords-on-linux/.
Para ler logs do grupo adm será realmente útil.
Você também deve verificar arquivos que contenham a palavra "password" em seu nome ou dentro do conteúdo, e também verificar IPs e emails dentro de logs, ou expressões regulares de hashes. Não vou listar aqui como fazer tudo isso, mas se você estiver interessado, pode verificar as últimas verificações que o linpeas realiza.
Se você souber de onde um script python será executado e você puder escrever dentro dessa pasta ou modificar bibliotecas python, você pode modificar a biblioteca do sistema operacional e inserir um backdoor nela (se você puder escrever onde o script python será executado, copie e cole a biblioteca os.py).
Para inserir um backdoor na biblioteca, basta adicionar no final da biblioteca os.py a seguinte linha (altere o IP e a PORTA):
Uma vulnerabilidade no logrotate
permite que usuários com permissões de escrita em um arquivo de log ou em seus diretórios pai potencialmente obtenham privilégios elevados. Isso ocorre porque o logrotate
, frequentemente em execução como root, pode ser manipulado para executar arquivos arbitrários, especialmente em diretórios como /etc/bash_completion.d/. É importante verificar as permissões não apenas em /var/log, mas também em qualquer diretório onde a rotação de logs seja aplicada.
Essa vulnerabilidade afeta a versão 3.18.0
e anteriores do logrotate
Mais informações detalhadas sobre a vulnerabilidade podem ser encontradas nesta página: https://tech.feedyourhead.at/content/details-of-a-logrotate-race-condition.
Você pode explorar essa vulnerabilidade com logrotten.
Essa vulnerabilidade é muito semelhante ao CVE-2016-1247 (logs do nginx), então sempre que você perceber que pode alterar logs, verifique quem está gerenciando esses logs e veja se é possível elevar privilégios substituindo os logs por links simbólicos.
Referência da vulnerabilidade: https://vulmon.com/exploitdetails?qidtp=maillist_fulldisclosure&qid=e026a0c5f83df4fd532442e1324ffa4f
Se, por qualquer motivo, um usuário conseguir escrever um script ifcf-<qualquer_coisa>
em /etc/sysconfig/network-scripts ou puder ajustar um existente, então seu sistema está comprometido.
Os scripts de rede, como ifcg-eth0 por exemplo, são usados para conexões de rede. Eles se parecem exatamente com arquivos .INI. No entanto, eles são ~sourced~ no Linux pelo Gerenciador de Rede (dispatcher.d).
No meu caso, o atributo NAME=
nesses scripts de rede não é tratado corretamente. Se você tiver espaço em branco no nome, o sistema tenta executar a parte após o espaço em branco. Isso significa que tudo após o primeiro espaço em branco é executado como root.
Por exemplo: /etc/sysconfig/network-scripts/ifcfg-1337
O diretório /etc/init.d
é o lar de scripts para o System V init (SysVinit), o sistema clássico de gerenciamento de serviços do Linux. Ele inclui scripts para start
, stop
, restart
e às vezes reload
de serviços. Esses scripts podem ser executados diretamente ou por meio de links simbólicos encontrados em /etc/rc?.d/
. Um caminho alternativo em sistemas Redhat é /etc/rc.d/init.d
.
Por outro lado, /etc/init
está associado ao Upstart, um sistema mais recente de gerenciamento de serviços introduzido pela Ubuntu, usando arquivos de configuração para tarefas de gerenciamento de serviços. Apesar da transição para o Upstart, os scripts do SysVinit ainda são utilizados juntamente com as configurações do Upstart devido a uma camada de compatibilidade no Upstart.
systemd surge como um moderno inicializador e gerenciador de serviços, oferecendo recursos avançados como inicialização sob demanda de daemons, gerenciamento de automontagem e snapshots do estado do sistema. Ele organiza arquivos em /usr/lib/systemd/
para pacotes de distribuição e em /etc/systemd/system/
para modificações de administradores, simplificando o processo de administração do sistema.